Q1. State of stress at a point P is given as

$$
\sigma=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Draw 3D- Mohr circle
Step-1: Find the principal stress at point P

$$
\lambda_{1}=1, \lambda_{2}=2, \quad \lambda_{3}=3
$$

Step-2 : Draw a co-ordinates in which vertical axis represents shear stress and horizontal axis represents normal stress.

3D-mohr circle

- Maximum shear stress is equal to radius of largest circle in 3D-mohr circle

$$
\tau_{\max }=\frac{\lambda_{3}-\lambda_{1}}{2}
$$

- Normal stress act on a plane of maximum shear stress is equal to

$$
\sigma_{n}=\frac{\lambda_{3}+\lambda_{1}}{2}
$$

- Normal stress and shear stress on any arbitrary plane is a region lies inside largest mohr circle excluding area inside other two circle in 3D- Mohr circle.

