MEE-S301

Epicyclic gear train

Q1. The annulus A in the gear shown in the fig 1. rotates at 300 rpm about the axis of the fixed wheel S which has 80 teeth. The three-armed spider (only one arm a is shown in figure) is driven at 180 rpm. Determine the number of teeth required on the wheel P.

First identify gear name

Sun Gear : Sun gear rotates about fixed axis of rotation.Arm : Arm rotates about fixed axis of rotation.Planet: Axis of rotation of planet is not fixed.

	Sun gear (S)	Planet gear (P)	Δηηιι	μς (Δ)	ARM (a)	ATTE-			
Speed (N)	$N_s = 0$	N _p = ??	$N_A = 300 \text{ rpm}$		N _{arm} = 180 rpr	m			
No of teeth	Z _s = 80	Z _p = ??	Z _A =	= ??	-				
 Sun gear, planet gear, arm constitute external epicyclic gear train By using relative velocity method, 					de (1) and (2)	we get,			
$\frac{N_{S} - N_{Arm}}{N_{P} - N_{Arm}} = -\frac{Z_{P}}{Z_{S}} [N_{S} = 0, N_{ARM} = 180 \text{ rpm}]$									
 					$\frac{\left(\frac{0-180}{N_P - 180}\right)}{\left(\frac{300-180}{N_P - 180}\right)} = \frac{-\frac{Z_P}{80}}{\frac{Z_P}{Z_A}} $ (a)				
By using relative velocity method, $\frac{N_A - N_{Arm}}{N_P - N_{Arm}} = + \frac{Z_P}{Z_A} \qquad [N_A = 300 \text{ rpm}, N_{ARM} = 180 \text{ rpm}]$ $\frac{300 - 180}{N_P - 180} = + \frac{Z_P}{Z_A} - \dots - (2)$					$\frac{180}{120} = \frac{Z_A}{80}$				
					$Z_A = \frac{3}{2} \times 80 = 120$ Number of teeth on gear A is equal to 120.				

	Sun gear (S)	Planet gear (P)	Annulus (A)	ARM (a)
Speed (N)	N _s = 0	N _p = 900 rpm	N _A = 300 rpm	N _{arm} = 180 rpm
No of teeth	Z _s = 80	Z _P = 20	Z _A = 120	-

Since gear S is mesh with gear P. Therefore module of gear S is equal to module of gear P

Module of gear S = $\frac{2r_s}{Z_S}$ Module of gear P = $\frac{2r_p}{Z_P}$

Similarly gear P is mesh with internal gear A. Therefore module of gear P is equal to module of gear A. Module of gear P = $\frac{2r_p}{Z_P}$ Module of gear A= $\frac{2r_A}{Z_A}$ Module of gear S = Module of gear P = Module of gear A

$$\frac{2r_s}{Z_S} = \frac{2r_p}{Z_P} = \frac{2r_A}{Z_A} = m$$

 $N_{P} - 180$

Also
$$r_A = r_S + 2r_P$$

 $Z_A = Z_S + 2Z_P$
 $120 = 80 + 2 \times Z_P$
 $Z_P = 20$
 $N_P = 900 rpm$
 $\boxed{\frac{0 - 180}{1 - 100}} = \underbrace{Z_P}$
From this equation we

80

gear

can find speed of planet