
AdaBoost Algorithm 

AdaBoost also called Adaptive Boosting is a technique in Machine Learning used as an 

Ensemble Method. The most common algorithm used with AdaBoost is decision trees 

with one level that means with Decision trees with only 1 split. These trees are also 

called Decision Stumps. 

  

What this algorithm does is that it builds a model and gives equal weights to all the data 

points. It then assigns higher weights to points that are wrongly classified. Now all the 

points which have higher weights are given more importance in the next model. It will 

keep training models until and unless a lower error is received. 

 

  

 



The working of AdaBoost Algorithm 

Let’s start understanding what and how does this algorithm works. 

Step 1 – The Image is shown below is the actual representation of our dataset. Since the 

target column is binary it is a classification problem. First of all these data points will be 

assigned some weights. Initially, all the weights will be equal. 

 

The formula to calculate the sample weights is: 

 

Where N is the total number of datapoints 

Here since we have 5 data points so the sample weights assigned will be 1/5. 

Step 2 – We start by seeing how well “Gender” classifies the samples and will see how 

the variables (Age, Income) classifies the samples. 

We’ll create a decision stump for each of the features and then calculate the Gini 

Index of each tree. The tree with the lowest Gini Index will be our first stump. 

Here in our dataset let’s say Gender has the lowest gini index so it will be our first stump. 



Step 3 – We’ll now calculate the “Amount of Say” or “Importance” or “Influence” for 

this classifier in classifying the datapoints using this formula: 

 

The total error is nothing, but the summation of all the sample weights of misclassified 

data points. 

Here in our dataset let’s assume there is 1 wrong output, so our total error will be 1/5, and 

alpha(performance of the stump) will be: 

 
Note: Total error will always be between 0 and 1. 

0 Indicates perfect stump and 1 indicates horrible stump. 

 



From the graph above we can see that when there is no misclassification then we have no 

error (Total Error = 0), so the “amount of say (alpha)” will be a large number. 

When the classifier predicts half right and half wrong then the Total Error = 0.5 and the 

importance (amount of say) of the classifier will be 0. 

If all the samples have been incorrectly classified then the error will be very high (approx. 

to 1) and hence our alpha value will be a negative integer. 

Step 4 – we need to update the weights because if the same weights are applied to the 

next model, then the output received will be the same as what was received in the first 

model. 

The wrong predictions will be given more weight whereas the correct predictions weights 

will be decreased. Now when we build our next model after updating the weights, more 

preference will be given to the points with higher weights. 

After finding the importance of the classifier and total error we need to finally update the 

weights and for this, we use the following formula: 

 

The amount of say (alpha) will be negative when the sample is correctly classified. 

The amount of say (alpha) will be positive when the sample is miss-classified. 

There are four correctly classified samples and 1 wrong, here the sample weight of that 

datapoint is 1/5 and the amount of say/performance of the stump of Gender is 0.69. 

New weights for correctly classified samples are: 



 

For wrongly classified samples the updated weights will be: 

 

Note: See the sign of alpha when I am putting the values, the alpha is negative when the 

data point is correctly classified, and this decreases the sample weight from 0.2 to 0.1004. 

It is positive when there is misclassification, and this will increase the sample 

weight from 0.2 to 0.3988 

 

We know that the total sum of the sample weights must be equal to 1 but here if we sum 

up all the new sample weights, we will get 0.8004. To bring this sum equal to 1 we will 

normalize these weights by dividing all the weights by the total sum of updated weights 

that is 0.8004. So, after normalizing the sample weights we get this dataset and now the 

sum is equal to 1. 



 

Step 5 – Now we need to make a new dataset to see if the errors decreased or not. For this 

we will remove the “sample weights” and “new sample weights” column and then based 

on the “new sample weights” we will divide our data points into buckets. 

 

Step 6 – We are almost done, now what the algorithm does is selects random numbers 

from 0-1. Since incorrectly classified records have higher sample weights, the probability 

to select those records is very high. 

Suppose the 5 random numbers our algorithm take is 0.38,0.26,0.98,0.40,0.55. 

Now we will see where these random numbers fall in the bucket and according to it, we’ll 

make our new dataset shown below. 



 

This comes out to be our new dataset and we see the datapoint which was wrongly 

classified has been selected 3 times because it has a higher weight. 

Step 9 – Now this act as our new dataset and we need to repeat all the above steps i.e. 

1.  Assign equal weights to all the datapoints 

2. Find the stump that does the best job classifying the new collection of samples by 

finding their Gini Index and selecting the one with the lowest Gini index 

3. Calculate the “Amount of Say” and “Total error” to update the previous sample 

weights. 

4.  Normalize the new sample weights. 

Iterate through these steps until and unless a low training error is achieved. 
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