Half Adder

Half Adder- The addition of 2 bits is done using a combination circuit called a Half adder. The input variables areaugend and addend bits and output variables are sum & carry bits. A and B are the two input bits.

Truth Table -

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Logical Expression:

1) For Sum:

Sum =A X-OR B

 $Carry = A \cdot B$

Implementation:

Note: Half adder has only two inputs and there is no provision to add a carry coming from the lower order bits when multi addition is performed.

Full Adder

Full Adder : It is the adder which adds three inputs and produces two outputs. The first two inputs are A and B and the third input is an input carry as C-IN. The output carry is designated as C-OUT and the normal output is designated as S which is SUM. A full adder logic is designed in such a manner that can take eight inputs together to create a byte-wide adder and cascade the carry bit from one adder to the another.

Truth Table:

Inputs			Outputs		
Α	В	C – IN	Sum	C - Out	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Logical Expression for SUM:

- = A' B' C-IN + A' B C-IN' + A B' C-IN' + A B C-IN
- = C-IN (A'B' + AB) + C-IN' (A'B + AB')
- = C-IN X-OR A X-OR B
- = \[m (1,2,4,7)

Logical Expression for C-OUT:

= A B + B C-IN + A C-IN = $\sum m (3,5,6,7)$

Implementation of Full Adder using Half Adders

2 Half Adders and a OR gate is required to implement a Full Adder.

With this logic circuit, two bits can be added together, taking a carry from the next lower order of magnitude, and sending a carry to the next higher order of magnitude.

Q1. Design and implement the following using half adder only. D=A XOR B XOR C E=A'BC+AB'C = (A'B+AB')C = (A XOR B)C F=AB'C+(A'+B')C = ABC'+A'B'CG=ABC

BCD ADDER

Procedure for BCD addition

- 1. Add two BCD numbers using ordinay binary addition.
- 2. If four-bit sum is equal to or less than 9, no correction is needed. The sum is in proper BCD form.
- 3. If the four-bit sum is greater than 9 or if a carry is generated from the four-bit sum, the sum is invalid.
- 4. To correct the invalid sum, add 0110_2 to the four-bit sum. If a carry results from this addition, add it to the next higher-order BCD digit.

Let A_3 , A_2 , A_1 , A_0 and B_3 , B_2 , B_1 , B_0 are two four – bit BCD numbers. these two BCD no. are added along with the carry in using 4- bit parallel binary adder as given below

1 st no.	A3	A2	A_1	A0
2 nd no.	B 3	B 2	\mathbf{B}_1	B0
	S 3	S 2	S 1	S 0
	C3	C2	C 1	C0

- 0 0 0 0
- 0 1 1 0

BCD Adder Block Diagram

The result obtained will be a binary no i.e; (C3 S3 S2 S1 S0) The logical circuit AND / OR gate is used to check the binary result obtained .

If (S3 S2 S1 S1) greater than 9 than, A=1 or B=1, Hence Y=1. similarly if last carry C3, then Y=1.

So when Y=1, 6 (0110) is added with a binary result.

If Y = 0 then, 0 (0000) is added with a binary result.

Using half adder zero (HA_0) full adder (FA_4) and (HA_1) the addition of two numbers is performed as given below-

carry generated	C2'	C 1'				
1^{st} No.	S 3	S 2	S 1	S 0		
2^{ND} NO.	0	Y	Y	0		
	Z3	Z2	Z 1	Z0	>	BCD RESULT