Lecture 23: Associative memory
& Hopfield Networks




/(:\ Feedforward/Feedback NNs

o Feedforward NNs

= The connections between units do not form cycles.
= Usually produce a response to an input quickly.

= Most feedforward NNs can be trained using a wide variety of
efficient algorithms.

« Feedback or recurrent NNs
= There are cycles in the connections.

= |n some feedback NNs, each time an input is presented, the

NN must iterate for a potentially long time before it produces
a response.

= Usually more difficult to train than feedforward NNs.



GSupervised-Learning NNs

« Feedforward NNs
= Perceptron

Adaline, Madaline

Backpropagation (BP)

Artmap

Learning Vector Quantization (LVQ)
Probabilistic Neural Network (PNN)
General Regression Neural Network (GRNN)
eedback or recurrent NNs
Brain-State-in-a-Box (BSB)

Fuzzy Conigitive Map (FCM)
Boltzmann Machine (BM)
Backpropagation through time (BPTT)
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— 1

E‘K Unsupervised-Learning NNs

H
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« Feedforward NNs
= Learning Matrix (LM)
= Sparse Distributed Associative Memory (SDM)
s Fuzzy Associative Memory (FAM)
= Counterprogation (CPN)
« Feedback or Recurrent NNs
Binary Adaptive Resonance Theory (ART1)
Analog Adaptive Resonance Theory (ART2, ART2a)
Discrete Hopfield (DH)
Continuous Hopfield (CH)
Discrete Bidirectional Associative Memory (BAM)
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my#@ Neural Networks with Temporal
ﬁ Behavior

Bani—

* Inclusion of feedback gives temporal characteristics
to neural networks: recurrent networks.

« Two ways to add feedback:
= Local feedback
« Global feedback
e Recurrent networks can become unstable or stable.

« Main interest is in recurrent network’s stability:
neurodynamics.

« Stability is a property of the whole system:
coordination between parts Is necessary.



a The Hopfield NNs

* In 1982, Hopfield, a Caltech physicist,

mathematically tied together many of the
ideas from previous research.

A fully connected, symmetrically weighted
network where each node functions both as
input and output node.

» Used for ‘ == Y VNN
7

o Associated memories
s Combinatorial optimization |
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' Associative Memories

« An associative memory is a content-addressable
structure that maps a set of input patterns to a set of
output patterns.

« Two types of associative memory: autoassociative
and heteroassociative.

« Auto-association

= retrieves a previously stored pattern that most closely
resembles the current pattern.

« Hetero-association

= the retrieved pattern is, in general, different from the input
pattern not only in content but possibly also in type and
format.
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ﬂ Associative Memories

Auto-association

A

memory

A

Hetero-association

Tehran

memory

City




% Linear associative memory

« The linear associator is one of the simplest and first studied
associative memory models

« Afeedforward type network where the output is produced in a
single feedforward computation

« The inputs connected to the outputs via the connection weight
matrix W = [w;], «

 Itis W that stores the N different associated pattern pairs {(X,,
Yo | k=1,2,.., N} where the inputs and outputs are either 5

or +1 YIooy2o¥s V4 P

W11




Qﬂ Linear associative memory

« Building an associative memory is constructing
W such that when an input pattern is presented, the
stored pattern associated with the input pattern is
retrieved - encoding

« W, 's for a particular associated pattern pair (X,, Y,)
are computed as (w;), = (X;)(Y))k

 Then

W =az,_NW,

 a is the proportionality or normalizing constant to
prevent the synaptic values from going too large
when there are a number of associated pattern pairs
to be memorized, usually a = 1/N.

« The connection weight matrix construction above
simultaneously stores or remembers N different
associated pattern pairs in a distributed manner.



Qﬂ Linear associative memory

After encoding or memorization, the network can be used for
retrieval 2 decoding (X = W-1Y)

Given a stimulus input pattern X, decoding or recollection is
accomplished by computing the net input to the output units
using the previous formula.

Then, y; (-1 or +1) can be computed by thresholding the
neuron |

The input pattern may contain errors and noise, or may be
an incomplete version of some previously encoded pattern.

Nevertheless, when presented with such a corrupted input
pattern, the network will retrieve the stored pattern that is
closest to actual input pattern.

So, the model is robust and fault tolerant, i.e., the presence
of noise or errors results only in a mere decrease rather than
total degradation in the performance of the network.

Associative memories being robust and fault tolerant are the
byproducts of having a number of processing elements
performing highly parallel and distributed computations.



a Linear associative memory

~ « Traditional measures of associative memory

performance are its memory capacity and content-
addressability.

Memory capacity refers to the maximum number of
associated pattern pairs that can be stored and correctly
retrieved

Content-addressability is the ability of the network to
retrieve the correct stored pattern

It can be shown that using Hebb's learning rule in
building the connection weight matrix of an associative
memory yields a significantly low memory capacity.
Due to the limitation brought about by using Hebb's
learning rule, several modifications and variants have
been proposed to maximize the memory capacity.



% Intuition

« Manipulation of attractors as arecurrent neural
network paradigm.

« We can identify attractors with computational objects.
e |[n order to do so, we must exercise control over the

location of the attractors in the state space of the
system.

« A learning algorithm will manipulate the equations
governing the dynamical behavior so that a desired
location of attractors are set.

« One good way to do this is to use the energy
minimization paradigm (e.g., by Hopfield).



% Intuition

« N units with full connection among every node (no self-
feedback).

« Given M input patterns, each having the same
dimensionality as the network, can be memorized In
attractors of the network.

« Starting with an initial pattern, the dynamic will converge
toward the attractor of the basin of attraction where the
initial pattern was placed.




% Example of using Hopfield NNs

Hopfield networls reconstmicting degraded inages
from notsy (top) or partial (bottom) cues.



« Low input resistance
« Unity current gain
« High output resistance

Synaptic
inputs

Nont: . Neural
.1 on]lmeant}f output
=0% o (1)
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a Additive model of a neuron

e The total current rowmg toward the input node of the
nonlinear element is:

T Nwex(t) + [

ji J

« The total current flowing away from the input nodes of
the nonlinear element is

Vi(t)/R; + C; dv;(t)/dt

« By applying Kirchoff's current law, we get
C; dv,(t)ydt + vi(t)/R; = 2. N w; Xi(t) + |,

» Given the induced local field v,(t), we may determine the
output of neuron j by using the nonlinear relation

X() =6 (v(n))



a Additive model of a neuron

e —

Bnd—

« S0, ignoring interneuron propagation time delays, we
may define the dynamics of the network by the following
system of coupled first-order ODEs:

C, dv,(t)/dt = -v,(t)y/R; + Z_Nw; x(t) + 1, ; j=1,...N

x(t) = ¢ (vj(n) )
For example: ¢(v(n) ) = 1/(1+exp(- v;(n))

e This can be converted to:
dxj(t)/dt = -xj(t)/Rj + o(Z; N W;; X;(t)) + KJ-



% Hopfield Model

« The Hopfield network (model) consists of a set
of neurons and a corresponding set of unit
delays, forming a multiple-loop feedback system

« The number of feedback loops is equal to the
number of neurons.

» The output of each neuron is fed back via a unit
delay element, to each of the other neurons in
the network.
= |.e., there is no self-feedback in the network.
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Hopfield Architecture
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% Hopfield Model: learning

- Lett,, t,, ...t, denote a known set of N-
dimensional fundamental memories

« The weights are computed using Hebb's rule

W, = (1/M) Z M tq,jtq,i. N
W;=0; J=i
t, - the i-th element of t,

« W becomes an NxN matrix
- The elements of vector t, are equal to -1 or +1

« Once computed, the synaptic weights are kept
fixed



% Hopfield Model: initialization

—

Bani—

- Lett),,. denote an unknown N-dimensional
iInput vector presented to the network

« The algorithm is initialized by setting

xi(0) =t N

| |,probe , )~ 1!""

- where x,(0) is the state of neuron j at time n = Q,

and t, IS the j-th element of the evctort

,probe probe



!ﬁ Hopfield Model: iteration

« The states of the neurons (i.e., randomly and
one at a time) are iterated asynchronously
(difference equation for discrete-time and
differential equations for continuous-time) until
convergence. For discrete-time it is

x(n+1)=sgn [Z_NWx()] ; j=1.2,...N

« The convergance of the above rule is
gauranteed (we will see why!)



!ﬁ Hopfield Model: Outputting

—

Bani—

 Let X;, .4 denote the fixed point (stable state)
computed at the end of the previous step
» The resulting output vector y of the network is
set as
y = Xfixed
« Step 1 is the storage phase, while the last three
steps constitute the retrieval phase
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/ﬂﬁ\The Discrete Hopfield NNs
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ﬁ‘ The Discrete Hopfield NNs
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ﬁ‘ The Discrete Hopfield NNs
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ﬂ\ State Update Rule
t//ﬁ

« Asynchronous mode

« Update rule

Hi(t+1):Zn:Wijvj(t)+li

J#

H (t+1) >0
-1 H.(t+1) <0

1
v, (t+1) =sgn|[H, (t+1)] :{
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Eﬂ Energy Function

e

n Wy, / Wyn [ Wy, [
Hi(t+1)= Z wv; () + 1, W\S\B // - // W) // »y
j;l ) W [ W\ W,
1 2 A
1 H;(t+1)=0 < ) 2 )
V.(t+1) = \ \, \
-1 H,(t+1)<0 . , \
Vi \;2 Vs

E =—%anznlwijvivj —Zn: |.v.

i=1 j=1 i=1

‘ If E is monotonically decreasing,
the system is stable.

(Due to Lyapunov Theorem)



d The Proof

vvln/ van/ vv3n/
Wy | Wy | |
E =1 Y Wy —Z v ot
=1 j=1 1 5 3
Suppose that at time t + 1, the k" R ¥ | 5
neuron is selected for update. changed at time t + 1. i ’
0 Q o
E() =+ Wy 0, () - Zl.v. () Zwk.v By~ v, (0
|;i };i |¢k =
O
E(t+1)———zz V(DY (E+D) - ZI S+D) > Wy, (t+ DV (E+D) = 1Ly, (t+1)
i=1 j=1 i=1

izk j=k |¢k
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ﬁ%\ The Proof

-

AE=E({t+1)—-E(t)= —Zn: WV, (t+Dv. () =1 v, (t+1) + Zn"wkivk (tv. (1) +1,v, (1)

:_tjwkivi 0+ ij[vk (t+1) —v, (0]

=—H, (t+D[v, (t+1) —v, (1)]

"Zn: WV, (OV; (1) = 1,v, (1)




EThe Proof

AE=E(t+1)-E()= —Zn: WV, (t+Dv. () =1 v, (t+1) + Zn:Wkin (tv. (1) +1,v, (1)

=—(anwkivi (t)+ ij[vk (t+1) —v, ()]
- —I—:(t +D)[v, (t+1) —v, (D]
vi() H(t+1) v, (t+1) AE
>0 1 0 w
<0 1 <0 E

-1 >0 1 <0
-1 <0 -1 0
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/ﬁi The Neuron of Continuous Hopfield NNs
| |
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ﬁ The Dynamics
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ﬂ\\The Continuous Hopfield NNs
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/ﬁx The Continuous Hopfield NNs

\
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ﬂLyapunov Energy Function
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XE‘K Lyapunov Energy Function
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ﬁ Stability of Continuous Hopfield NNs

i
e —

—

dE_

dt

1 n
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J#n
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’fﬁz Stability of Continuous Hopfield NNs
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Dynamics C Zwv ~Gu + 1.
j;t
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' Stability of Continuous Hopfield NNs
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ﬁ Basins of Attraction




Trajectories

A ttractors
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E‘\ Local/Global Minima

\
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Energy Landscape



a Hopfield Model (Summary)

—

Bnd—

« The Hopfield network may be operated in a continuous
mode or discrete mode
« The continuous mode of operation is based on an
additive model
» The discrete mode of operation is based on the
McCulloch-Pitts model
« We may establish the relationship between the stable
states of the continuous and discrete Hopfield models
with the following assumptions:
= The output of a neuron has the asymptotic values
X, =1whenv,> ~ and X =-1whenv, > -
= The midpoint of the activation function of a neuron lies at
the origin, thatis ¢(0) =0
= Correspondingly, we may set the bias |, equal to zero for all
J.



% Hopfield Model

« If the gain of the activation function is very large
(infinity), we can show that the energy function
of the formulating the energy function E of the
discrete (and continuous) Hopfield models can
be rewritten as

N N

1
EF=__ S S Wi Tadi(d 2
5 D P Ji-lq _;I'L 7‘—.}')

1=1 j=1

« The models tried to minimize the above energy
function



ﬁ Hopfield Model: Storage

—

Pni——

« The learning is similar to Hebbian learning:

M
l [ [
Wjq = N E PRI
‘ p=1

« w; =0 ifi =]. (Learning is one-shot.)

e In matrix form the above becomes:
, M
L T .-
W=~ Zgﬂgﬂ — M1
=1

« The resulting weight matrix W is symmetric:
W =WT



ﬁ Hopfield Model: Activation (Retrieval)

—

Bnd—

* Initialize the network with a probe pattern
probe.
£L 5 (0) = *E.prc;be:j

» Update output of each neuron (picking them by

random) N
Ij_(’” + 1) = sgn (Z i:pjrz*?(r‘f))

1—1
« until x reaches a fixed point.
 The fixed point is the retrieved output.



.  Storage Capacity of Hopfield
a Network

Bnd—

» Given a probe (unknown input) equal to the
stored pattern, the activation of the j'" neuron
can be decomposed into the signal term and the
noise term (The unit hypercube is N-dimensional
and we have M fundamental memory):

N
(3 — w
7 E e'—l _}351 2 N
SO DRTED B
N =1 g,u i— g,u z%rz )

M

1 Z Z
— ‘fr..f_j + _, 6,& E,u,.z,gi /1
v N

signal p=1,pFv

noise



mw#@ Storage Capacity of Hopfield
B Network

—
—

« The signal to noise ratio is obtained as b = N/M

* It has been shown that memory recall of the
Hopfield network deteriorates with increasing
oad parameter b, and breaks down at the
critical value b, = 0.14

e Thus, M < 0.15N in order that Hopfield retrieve
correctly




ﬁ Cohen-Grossberg Theorem

« Cohen & Grossberg defined a general principle for
assessing the stability of a certain class of neural
networks described by the following equations (Hopfiled
model is a special case):

duy(t)/dt = a(u)lby(u;) - Zieg™ ¢ ¢ () 1 5 j=1,....N

« They proved that the energy function E described below

can be considered as a Lyapunov function for the above
system

E =(1/2) " ;j=1N C;i ¢ () ¢; ()
5N by (k)p(k)dk

¢’;(k) = (d/dk)e;(k)
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ﬂ Associative Memories

|-

« Also named content-addressable memory.

« Autoassociative Memory (Hopfield Memory)

« Heteroassociative Memory (Bidirection Associative Memory)

Stored Patterns

i
— y Autoassociative

i
7 y Heteroassociative



!ﬂ Hopfield Memory

—

Bnd—

Fully connected
14,400 weights

x10 Neurons

0123 2
Hh " §

Stored Patterns Memory Association



ﬁ Hopfield Memory

—

Fully connected
14,400 weigh

Hb " 1§ 3333

Stored Patterns Memory Association
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fﬁx The Storage Algorithm

“L/I . . .
Suppose that the set of stored patterns is of dimension n.

X = (X, X5, X)) k=1,2,...p.
x‘e{+1,-1} i=12,...n. (

P
W => x“(x*)" - pl W, =<
2 XC) —pl
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Eﬂ Analysis
\.

L i
W:kzplxk(xk)T —pl
Suppose that x = x'. _
Wx:{zp:xk(x")T - pl}x
=]
~nx' — px' =(n- p)x’
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a Example

-

x'=(1,-1-11)" m

x*=(-11-11)"
0 2 0
2 0 0
0 0 0
0 0 -2

p
W= x(x)" —pl W
k=1

Xl(Xl)T +X2(X2)T —

(P
:<kz_;xikxf | #
\0 I=_j
1 -1 -1 1
1 1 1 -1
1 1 1 -1
1 -1 -1 1
1 -1 1 -1
1 1 -1 1
1 -1 1 -1
1 1 -1 1
2 -2 0 0
2 2 0 0
0 0 2 -2
0 0 -2 2
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ﬁ Example

e

X! =(1,-1,-11)"

X2 =(-1,1,-11)"

0 -2 0

-2 0 0
W =

0O 0 O

0 0 -2

EmE 0=
m N

n n

EQ)=—%> > W, XX, —Zn: . X

0 i—1 j-1
0 ==3 20 WiXX,
i—1 j-1
—2 = -1 xTWXx
0

- = 2(X X, + X;3X,)
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El Example
:\ \\

e

X'=(01-1-11)" mrm ©O—-Q®

x*=(-11-11)" Cmrm

E(X) = 2(XX, + X,X,)

@ @ G

-

—1

@

7

Y
Stable
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El Example
|

e

x'=(1-1-11)" mIm

E(X) = 2(XX, + X,X,)

O—@
X =(-11-11)" [(mm

-1

@

-

-2

-1

-1

-1

@

®0®

7

—
Stable
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Eﬂ Bidirection Memory
t//ﬁ

y(t+1) =a|Wx(t)]

Y1

<

Backward
Pass

X(t' +1) = a[WTy(t’)]
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ﬁi Bidirection Memory
'-1 \

Stored Patterns

<

Backward
Pass

X(t'+1) = a[WTy(t’)]
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ﬂ\\The Storage Algorithm

Stored Patterns ~ X* = (X, Xp0eeey X)X €{-11}
Y =V Yoreon ¥a) Y e{-11}




ﬁ Analysis
W = Zyk (Xk)T

Suppose xK is one of the stored vector: k=1

y = a(ka') = a(zp:yk(xk)T xk']
k=1 \

p
P ' '
=a| my“ + > y (xX)'x" | & a(myk ) — yk
\ ok )
~0

Energy Function:
E(x,y) =—3ix" W'y —2y"Wx = -y Wx



a Applications of Hopfield Memory

‘/

« Pattern restoration
« Pattern completion
« Pattern generalization
« Pattern association



ﬁ | Reading

Pni——

« S Haykin, Neural Networks: A Comprehensive
Foundation, 2007 (Chapter 14).



