
Representing Curves and Surfaces 

Curves and surface modeling are very rich topics in computer graphics. We will touch on 

three methods to approximate curves and curved surfaces 

 polygonal meshes 

 parametric curves and surfaces 

 quadric surfaces. 

Parametric curves are introduced as a preparatory step in understanding parametric surfaces. 

 

OVERVIEW 

Polygon Mesh 

A polygon mesh is a set of connected polygonally bounded planar surfaces. A mesh can be 

used to represent polygonal objects in a natural manner. A mesh can also be used to 

approximate a curved surface. Refer to figures below. 

 



 

Parametric Curve 

A parametric polynomial curve is used to represent a 3D curve. Points (x, y, z) on the curve 

are defined by three polynomials, one each for x, y, z. The polynomials are in one parameter, 

t. Typically, a third degree polynomial is used which produces a cubic curve. This figure 

depicts a Bezier curve. 

  

 

Parametric Patches (surfaces) 

A parametric bivariate polynomial surface patch is used to represent a 3D curved surface. 

Points on the patch are defined by three bivariate polynomials, one each for x, y, z. The 

boundaries of the patch are parametric curves. Typically, a third degree bivariate polynomial 

is used which produces a bicubic patch. This is a much more efficient representation of a 

curved surface than a polygon mesh (fewer parametric patches needed for accuracy). This 

figure depicts a Bezier surface. 

 



 

Quadric Surfaces 

A quadric surface is implicitly defined by an equation f(x, y, z) = 0, where f is a quadric 

polynomial in x,y,z. Example quadrics are circles, spheres, ellipsoids, etc. 

 

Polygon Meshes 

A mesh is a set of vertices, edges, and polygons. Each edge in the mesh is shared by at most 

two polygons. An edge connects two vertices. A polygon is a closed sequence of edges. 

The key issue with meshes is one of representation and the ensuing space/time tradeoffs. 

An explicit mesh representation  

  

 requires that each polygon be specified by a list of vertices. Such a representation 

duplicates many vertices and does not identify shared vertices and edges. Rendering 

such a mesh would result in redrawing all shared edges. Thus, this representation is 

neither space nor time efficient. 

A vertex pointer representation  

  

 requires that each polygon be specified as a list of pointers (indices) into a list of 

vertices. Each vertex is stored exactly once. The space overhead is the list of pointers 

maintained for each polygon. The representation identifies shared vertices but still 

does not identify shared edges so redrawing occurs. This representation is space 

efficient/time inefficient. 

Example 

VList = {V1, V2, V3, V4} where Vi = (xi, yi, zi) and Polygon1 = {1, 2, 4}, Polygon2 = {2, 3, 

4}, ie. Two triangles are specified with a shared edge incident on vertices V2, V4. 

End Example 

An edge list representation  

  

 requires that each polygon be specified as a list of pointers (indices) into a list of 

edges. Each edge is stored exactly once. An edge is composed of its two vertices and 

the polygon to which it belongs. Each vertex is stored exactly once. The space 

overhead is the list of edges and the list of pointers for each polygon. To render an 



outlined mesh, it is necessary to render only the edge list. To render filled polygons is 

equally efficient. Shared edges are not redrawn. This representation is moderately 

space efficient and very time efficient. 

Example 

VList'={V1, V2, V3, V4} where Vi = (xi, yi, zi) and EList" ={E1, E2, E3, E4, E5} where E1 

= {1', 2', P1, NULL}, E2 = {2', 4', P1, P2}, E3 = {1', 4', P1, NULL}, E4 = {2', 3', P2, 

NULL}, E5 = {3', 4', P2, NULL}, and P1 = {1", 2", 3"}, P2 = {2", 4", 5"}. Two triangles are 

specified with a shared edge E2 incident on vertices V2, V4. 

End Example 

Because of the complexity of representing meshes correctly, consistency checks are 

frequently carried out for a constructed mesh. 

Issues of concern are : each edge is used, each vertex is incident on two edges, each polygon 

is closed, the mesh is connected, no holes in mesh, each polygon is planar, etc. The edge list 

representation is the most useful for such checks. 

One neat application of polygonal meshes is the fractal generation of terrains such as 

mountain ranges. Troy Kozee's I.S. investigated this topic. The mesh is generated by starting 

with a unit square in the x-z plane. Recursive bilinear interpolation is used to construct an n x 

n grid of vertices within the unit square. The depth of the recursion defines the granularity of 

the mesh (the deeper the recursion the more polygonal patches generated). The y-coordinate 

of each vertex is then modulated using a fractal function to offset its value from the origin. 

Many kinds of functions can be applied to modulate y, but Troy used Fractal Brownian 

motion which produces very "noisy" results, ie. rugged, peaky mountains like the Rockies.  

 

Parametric Cubic Curves 

Parametric curves are represented by three equations 

x = x(t), y = y(t), z = z(t) 

which allows a curved surface to be approximated by a piecewise polynomial curve. The 

three equations above are cubic polynomials in the parameter t. 

Cubic polynomials are used because this is the lowest order polynomial which allows non-

planar curves to be expressed. 

What is a non-planar curve? Why is a cubic polynomial the lowest order polynomial for non-

planar curves? 

  

 If we take the derivative of a quadratic polynomial at point (x, y, z), what do we get? 



o The slope of the tangent line at (x, y, z). So the "movement" along the curve at 

(x, y, z) is linear 

 If we take the derivative of a cubic polynomial at point (x, y, z), what do we get? 

o A quadratic polynomial. So the "movement" along the curve at (x, y, z) is non-

linear and may cross itself 

Each cubic polynomial has the general form : 

at
3
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2
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The four unknown coefficients (a, b, c, d) are solved for using four knowns (which might be 

the two endpoints of the curve and the derivatives of the endpoints or the unit tangent vectors 

at the endpoints). 

The cubic polynomials required to specify a curved segment Q(t) are (EQS1): 

x(t) = axt
3
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2
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z(t) = azt
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Because we are dealing with finite curves, t is in the interval [0,1]. 

We can more compactly represent Q(t) as T*C where T is the row vector : 

  

[ t
3
  t

2
  t  1] 

  

and C is the 4 X 3 matrix : 

ax ay az 

bx by bz 

cx cy cz 

dx dy dz 

We can talk about the geometric continuity of two curves that meet at a join point. The 

continuity is expressed as a relation between the tangent vectors of the two curves. The 

tangent vector of a cubic curve is Q`(t) or T` * C = 

[ 3t
2
  2t  1  0 ] * C 

 Go continuity exists if two curves join at a join point. 



 G1 continuity exists if the direction of the two tangent vectors is equal. 

 C1 continuity exists if the direction and magnitude of the two vectors is equal. Generally, C1 

continuity implies G1 continuity 

 Cn continuity exists if the two vectors are equal through the nth derivative. Refer to figures 

below.

 



A curve Q(t) is defined by constraints on endpoints, tangent vectors, and continuity between 

curve segments. 

The three types of cubic curves are 

 hermite defined by two endpoints and two tangent vectors 

 bezier defined by two endpoints and two other points that control the endpoint tangent 

vectors 

 splines which are defined by 4 endpoints. 

To see how the coefficients of EQS1 can depend on 4 unknowns rewrite 

Q(t) = T*C as T*M*G where the coefficient matrix C = M*G. 

M is a 4 x 4 basis matrix and G is a 4 element column vector of geometric constraints 

(endpoints or tangent vectors) called the geometry vector. 

The elements of M and G are constants. Both M and G are different for each type of 

curve. 

 

We now have to determine how to compute M for each type of curve. 

 

Hermite Curves 

The hermite curve is determined by constraints on the two given endpoints, P1, P4, and by 

constraints on the two tangent vectors, R1, R4, to the given endpoints. 

To find the basis matrix, Mh, for a hermite curve 

 construct four equations, one for each constraint, and solve for the four unknowns. 

The process is stated below for x(t) only, must be carried out for y(t) and z(t). 

1.The parametric equation for x(t) 

 

x(t) = axt
3
 + bxt

2
 + cxt + dx = T*Cx = T*Mh*Gx 

  

2. The geometry vector Gx captures constraints for the x coordinate of a point on the curve. 



Remember that t is in the interval [0,1]. Substituting t = 0 into the parametric equations will 

give us point P1 on the curve. Substituting t = 1 into the equations will give us point P4 on 

the curve. Thus we constrain the curve to be finite and end on the given points. 

T row vector 

[ t
3
  t

2
  t  1] 

  

Substitute t = 0 into the row vector for T to get, x(0) = P1x = | 0 0 0 1| *Mh*Gx. This is the 

constraint on x when t = 0. 

Substitute t = 1 into the vector to get x(1) = P4x = |1 1 1 1|*Mh*Gx. This is the constraint on 

x when t = 1. 

3. Determine the tangent vectors at P1 and P4 by calculating x`(t) = 

[ 3t
2
  2t  1  0] 

Substitute t = 0 into x`(t) to find x`(0) = R1x = |0 0 1 0|*Mh*Gx. This is the constraint on the 

tangent vector at P1 when t = 0. 

Substitute t = 1 into x`(t) to find x`(1) = R4x = |3 2 1 0| *Mh*Gx. This is the constraint on the 

tangent vector at P4 when t = 1. 

4. The four constraints for Gx = 

P1x = 0 0 0 1     

P4x = 1 1 1 1 * Mh * Gx 

R1x = 0 0 1 0     

R4x = 3 2 1 0     

5. Notice that the above equation is Gx = M*Mh*Gx where M is the expanded 4 X 4 matrix 

in step 4. The only way this equation can hold is if the basis matrix, Mh, is the inverse of M. 

We now have the method to solve for the basis matrix which is not done here, but is simply 

given. 

Invert M to get Mh = 

2 -2 1 1 

-3 3 -2 -1 

0 0 1 0 



1 0 0 0 

If we wish to carry out the Hermite curve evaluation in matrix form then the structure is 

x(t) =     2 -2 1 1            P1x P1y P1z P1w 

y(t) = [t
3
 t

2
 t1] * 

-3 3 -2 

-1 
*          P4x P4y P4z P4w 

z(t) =     0 0 1 0            R1x R1y R1z R1w 

w(t) =     1 0 0 0            R4x R4y R4z R4w 

T * Mh gives us the four Hermite blending functions, b0 = (2t
3
 -3t

2
 + 1), b1 = (-2t

3
 +3t

2
), b2 

= (t
3
 -2t

2
 + t) and b3 = (t

3
 - t

2
) 

and 

    P1x P1y P1z P1w 

[ b0 b1 

b2 b3] 
* P4x P4y P4z P4w 

    R1x R1y R1z R1w 

    R4x R4y R4z R4w 

gives us Q(t) = b0*P1 + b1*P4 + b2*R1 + b3*R4 

a point (x(t), y(t), z(t))on the curve, Q(t), is given by a weighted sum for each coordinate. For 

example 

x(t) = b0*P1x + b1*P4x + b2*R1x + b3*R4x 

y(t) = b0*P1y + b1*P4y + b2*R1y + b3*R4y 

z(t)           =           b0*P1z           +           b1*P4z          +           b2*R1z          +         b3*R4z 

w(t) is ignored. 

 

 

Bezier Curves 

Bezier curves are specified using the two endpoints of the curve and two points not on the curve. The 

4 points are referred to as control points. The control points define the convex hull of the curve where 

we might think of the hull as a bounding box that completely contains the curve. Note that all four 

control points do not have to lie on the convex hull boundary. Refer to figures below. 



.

 

Let us refer to P1, P4 as the endpoints of the curve. P2, P3 are the control points which are used to 

define the tangent vectors at P1 and P4. The tangent vectors are determined by the vectors P2 P1 and 

P4 P3. These two vectors are related to the tangent vectors as follows : 

R1 = Q`(0) = 3 (P2-P1) and R4 = Q`(1) =3(P4-P3), EQs2. 

The constant 3 is used to ensure that the curve has a constant velocity from P1 to P4 (refer to the 1st 

derivative of Q(t) to see why 3 is used). 

The Bezier geometry vector Gb is merely : 

P1 

P2 

P3 

P4 

The matrix Mhb that defines the relation between the Hermite geometry vector Gh and the Bezier 

geometry vector Gb (Gh = Mhb * Gb) is 

  P1   1 0 0 0   P1   

Gh= P4 = 0 0 0 1 * P2 =Mhb*Gb 

  R1   -3 3 0 0   P3   

  R4   0 0 -3 3   P4   

To find the Bezier basis matrix the following substitution is performed using the definition of a 

hermite curve: 

Q(t) = T*Mh*Gh = T*Mh*(Mhb*Gb)                                                                              [from above] 



= T*(Mh*Mhb)*Gb = T*Mb*Gb. We know the basis matrix, Mh, for the hermite curve and Mhb is 

specified above so just carry out the multiplication to find Mb = 

-1 3 -3 1 

3 -6 3 0 

-3 3 0 0 

1 0 0 0 

and the curve Q(t) = T*Mb*Gb is 

Q(t) = (1-t)
3
P1 + 3t(1-t)

2
P2 + 3t

2
(1-t)P3 + t

3
P4 

Note that the 4 weighting functions, bo = (1-t)
3
, b1 = 3t(1-t)

2
, b2 = 3t

2
(1-t) and b3 = t

3 
are formed by 

    -1 3 -3 1 

[ t
3
 t

2
 t 

1] 
* 3 -6 3 0 

    -3 3 0 0 

    1 0 -0 0 

and are referred to as the Bernstein Polynomials. Note that (1-t)
3
 = -t

3
 +3t

2
 -3t +1. This is what we get 

when we multiply T by column one of Mb above. The other weighting functions are produced 

similarly. 

 


