COMPLIMIENTS

Complements are used in the digital computers in order to simplify the subtraction operation and for the logical manipulations.

1's complement

2's complement

0	1	0	1	1

Ex. Find the subtraction (1110101-1001101) ${ }_{B}$ using the 2 's complement method.

Sol.	Minuend $=1110101$	
	Subtrahend = 1001101	
	Minuend	1110101
	2 's complement of subtrahend $=$	+ $\underline{0110011}$
		$\underline{10101000}$

Here, an end carry occurs, hence discard it.
The result of $(1110101-1001101)_{2}$ is $(0101000)_{2}$

9's Compliment

Example :Find the 9's-compliment of 55274.
Sol: 99999

- 5 5274
$\underline{44725}$

10's Compliment

Solve $Y=(157)_{D}-(61)_{D}=(?)_{D}$ using 10 's compliment method.
Sol : Take the 9's compliment of $(061)_{D}$
Add 1 to get the 10 's compliment
Then add the first number ie; $(157)_{\mathrm{D}}$

$$
\begin{aligned}
\mathrm{Y} & =(157)_{\mathrm{D}}-(061)_{\mathrm{D}} \\
& =(157)_{\mathrm{D}}+(-061)_{\mathrm{D}} \\
& =(157)_{\mathrm{D}}+\left(10 \text { 's compliment of }(061)_{\mathrm{D}}\right) \\
& =(157)_{\mathrm{D}}+\left(9 ' \mathrm{~s} \mathrm{compliment} \mathrm{of}(061)_{\mathrm{D}}+1\right)
\end{aligned}
$$

$=>9$'s compliment of $(061)_{D}=999$
061

$$
\begin{array}{r}
938 \\
+\quad 1
\end{array}
$$

10's compliment 939
$\mathrm{Y}=(157)_{\mathrm{D}}-(061)_{\mathrm{D}}$
$=157$
$\begin{array}{r}+939 \\ \hline 1096\end{array}$
Since the last carry is 1 therefore the result is a +ve number and neglect the carry.
Therefore result is 96 in decimal
$Y=(157)_{D}-(061)_{D}=(96)_{D}$

Ex.2. Find the subtraction (51346-06934) $)_{D}$ using the 10's compliment method.

Solution:- Minuend	$=51346$
Subtrahend	$=06938$

Minuend	$=51346$
.10 's compliment of subtrahend	$=+\underline{93062}$
	$=\underline{1,44408}$

Here, an end carry occurs, hence discard it.
The result of $(51346-06938)_{D}$ is $(44408)_{D}$

