
Scheduling Criteria for comparing the
CPU scheduling algorithms

• CPU utilization – keep the CPU as busy as possible

• Throughput – # of processes that complete their
execution per time unit

• Turnaround time – amount of time to execute a
particular process

• Waiting time – amount of time a process has been
waiting in the ready queue

• Response time – amount of time it takes from when a
request was submitted until the first response is
produced, not output (for time-sharing environment)

Scheduling Algorithm Optimization
Criteria

• Max CPU utilization

• Max throughput

• Min turnaround time

• Min waiting time

• Min response time

CPU scheduling algorithms

• First in First out(FIFO)

• Shortest Job First (SJF)

• Shortest Remaining Time First

• Priority Scheduling

• Round Robin (RR)

First- Come, First-Served (FCFS)
Scheduling

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17

P P P
1 2 3

0 24 3027

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
P2 , P3 , P1

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time: (6 + 0 + 3)/3 = 3
• Much better than previous case
• Convoy effect - short process behind long process

– Consider one CPU-bound and many I/O-bound processes

P
1

0 3 6 30

P
2

P
3

Example of SJF

rriva l TimeProcessA Burst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

• SJF scheduling chart

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P
3

0 3 24

P
4

P
1

169

P
2

Preemptive Scheduling Non-preemptive Scheduling

A processor can be preempted to execute the different
processes in the middle of any current process
execution.

Once the processor starts its execution, it must finish
it before executing the other. It can't be paused in the
middle.

CPU utilization is more efficient compared to Non-
Preemptive Scheduling.

CPU utilization is less efficient compared to
preemptive Scheduling.

Waiting and response time of preemptive Scheduling
is less.

Waiting and response time of the non-preemptive
Scheduling method is higher.

Preemptive Scheduling is prioritized. The highest
priority process is a process that is currently utilized.

When any process enters the state of running, the
state of that process is never deleted from the
scheduler until it finishes its job.

Preemptive Scheduling is flexible. Non-preemptive Scheduling is rigid.

Examples: - Shortest Remaining Time First, Round
Robin, etc.

Examples: First Come First Serve, Shortest Job First,
Priority Scheduling, etc.

Preemptive Scheduling algorithm can be pre-empted
that is the process can be Scheduled

In non-preemptive scheduling process cannot be
Scheduled

In this process, the CPU is allocated to the processes
for a specific time period.

In this process, CPU is allocated to the process until it
terminates or switches to the waiting state.

Preemptive algorithm has the overhead of switching
the process from the ready state to the running state
and vice-versa.

Non-preemptive Scheduling has no such overhead of
switching the process from running into the ready
state.

Example of Shortest-remaining-time-
first

• Now we add the concepts of varying arrival times and preemption
to the analysis

ProcessAarri Arrival TimeT Burst Time
P1 0 8
P2 1 4
P3 2 9
P4 3 5

• Preemptive SJF Gantt Chart

• Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5
msec

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

Priority Scheduling

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority
(smallest integer  highest priority)
– Preemptive
– Nonpreemptive

• SJF is priority scheduling where priority is the inverse of
predicted next CPU burst time

• Problem  Starvation – low priority processes may never
execute

• Solution  Aging – as time progresses increase the priority
of the process

Example of Priority Scheduling

ProcessA arri Burst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2 msec

Round Robin (RR)

• Each process gets a small unit of CPU time (time quantum q),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

• If there are n processes in the ready queue and the time quantum is
q, then each process gets 1/n of the CPU time in chunks of at most
q time units at once. No process waits more than (n-1)q time units.

• Timer interrupts every quantum to schedule next process
• Performance

– q large  FIFO
– q small  q must be large with respect to context switch, otherwise

overhead is too high

Example of RR with Time Quantum = 4

Process Burst Time
P1 24
P2 3
P3 3

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but better response
• q should be large compared to context switch time
• q usually 10ms to 100ms, context switch < 10 usec

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

Example of RR with Time Quantum = 2

Process Burst Time
P1 24
P2 3
P3 3

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but better response
• q should be large compared to context switch time
• q usually 10ms to 100ms, context switch < 10 usec

Time Quantum and Context Switch
Tim

Multilevel Queue Scheduling

• Ready queue is partitioned into separate queues, eg:
– foreground (interactive)
– background (batch)

• Process permanently in a given queue
• Each queue has its own scheduling algorithm:

– foreground – RR
– background – FCFS

• Scheduling must be done between the queues:
– Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.
– Time slice – each queue gets a certain amount of CPU time which it

can schedule amongst its processes; i.e., 80% to foreground in RR
– 20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue

• A process can move between the various queues;
aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by
the following parameters:
– number of queues

– scheduling algorithms for each queue

– method used to determine when to upgrade a process

– method used to determine when to demote a process

– method used to determine which queue a process will
enter when that process needs service

Example of Multilevel Feedback Qu

• Three queues:
– Q0 – RR with time quantum 8 milliseconds

– Q1 – RR time quantum 16 milliseconds

– Q2 – FCFS

• Scheduling
– A new job enters queue Q0 which is served FCFS

• When it gains CPU, job receives 8 milliseconds

• If it does not finish in 8 milliseconds, job is moved to queue Q1

– At Q1 job is again served FCFS and receives 16 additional milliseconds

• If it still does not complete, it is preempted and moved to queue Q2

• Preemptive Scheduling:
Preemptive scheduling is used when a process switches
from running state to ready state or from waiting state
to ready state. The resources (mainly CPU cycles) are
allocated to the process for the limited amount of time
and then is taken away, and the process is again placed
back in the ready queue if that process still has CPU
burst time remaining. That process stays in ready
queue till it gets next chance to execute.

• Algorithms based on preemptive scheduling are: etc

• JOB BURST TIME ARRIVAL TIME PRIORITY

• A 10 0 3

• B 2 1 1

• C 4 2 3

• D 6 4 4

• E 5 4 2

FCFS, PREEMPTIVE SJF, PRIORITY SCHEDULING, RR

FIND THE AVERAGE WAITING TIME FOR ABOVE
PROCESS

