Chapter 12

FLOW THROUGH
PIPES



INTRODUCTION

A pipe is a closed conduit (generally of circular section) which is used for carrying fluids under
pressure. The flow in a pipe is termed pipe flow only when the fluid completely fills the cross-section and
there is no free surface of fluid. The pipe running partially full (in such a case atmospheric pressure exists
inside the pipe) behaves like an open channel.

LOSS OF ENERGY (OR HEAD) IN PIPES

When water flows in a pipe, it experiences some resistance to its motion, due to which its velocity
and ultimately the head of water available is reduced. This loss of energy (or head) is classified as follows:

A. Major Energy Losses

This loss is due to friction.

B. Minor Energy Losses

These losses are due to:

Sudden enlargement of pipe,
Sudden contraction of pipe,
Bend of pipe,

An obstruction in pipe,

Pipe fitting, etc.
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MAJOR ENERGY LOSSES

These losses which are due to friction are calculated by:
1. Darcy-Weisbach formula
2. Chezy’s formula

Darcy-Weisbach formula

The loss of head (or energy) in pipes due to friction is calculated from Darcy-Weisbach formula
(derived in chapter 11 Art. 11-2) which 1s given by:
41LV*
he = L ~(12-1)
Dx2g

hf = Loss of head due to friction,
f = Co-efficient of friction, (a function of Reynolds number, Re)

h = 0.071 for Re varying from 4000 to 10°

(Re)"*

— ;2_6 for Re < 2000 (laminar/viscous flow)
e

L = Length of the pipe,

where,

V' = Mean velocity of flow, and

D = Diameter of the pipe.



Chezy’s Formula for Loss of Head due to Friction

Refer to Fig. 11-2. An equilibrium between the propelling force due to pressure difference and
the frictional resistance gives :

(p,—-p,)A = f PLV*

or BBV (> L e [Refer to Art. 11.2]
w w
or h = LELV
w A4

h
Mean velocity, V' = K X 1’ CF
P

where, the factor \/; 1s called the Chezy’s constant, C;

the ratio < (: e ﬂow j 1s called the hydraulic mean depth or hydraulic radius and

~ wetted perimeter
denoted by m (or R);

hy

the ratio prescribes the loss of head per unit length of pipe and 1s denoted by i or S (slope).

Mean velocity, V' = C ./m i ..(12-2)

Eqn. (12-2) 1s known as Chezy’s formula. This formula helps to find the head loss due to friction
if the mean flow velocity through the pipe and also the value of Chezy’s constant C are known.



(i) Darcy-Weisbach formula (for loss of head) is generally used for the flow through pipes.
(if) Chezy’s formula (for loss of head) is generally used for the flow through open channels.

(7ii7) The values of hydraulic mean depth for a circular pipe,

D Area
m= —|"m= _ = =
4 Perimeter D 4

P

MINOR ENERGY LOSSES

Whereas the major loss of energy or head is due to friction, the minor loss of energy (or
head) include the following cases:

1.

Nouhkwbh

Loss of head due to sudden enlargement,

Loss of head due to sudden contraction,

Loss of head due to an obstruction in the pipe,
Loss of head at the entrance to a pipe,

Loss of head at the exit of a pipe,

Loss of head due to bend in the pipe, and

Loss of head in various pipe fittings.



LOSS OF HEAD DUE TO SUDDEN ENLARGEMENT

A liquid flowing through a pipe which has sudden enlargement. Due to sudden enlargement, the flow is decelerated
abruptly and eddies are developed resulting in loss of energy (or head). Consider two sections 1 — 1(before enlargement)
and 2 — 2 (after enlargement).

Let, 4, = Area of pipe at section 1-1.

= g D} (where D, 1s the @ @
.‘_
diameter of the pipe), ) ' V T
p, = Intensity of pressure at section I] v | V.
_ by 1 . — > A4,
1 1, | . (DI) p}.AJ ij_A: (H.})
V, = Velocity of flow at section 1-1, v _ ' (D\\ lﬂ
4, (: ; D; ) , p, and ¥, = Correspond | vz?\k |
1 2
ing values at section 22, O Eddies O

p, = Intensity of pressure of the liquid eddies on the area (4, —4,), and

h, = Loss of head due to sudden enlargement.

Applying Bernoulli’s equation to sections 1-1 and 2—2, we have:



Ve 5 5
Pro 1., 2 B3 Ty z, +Loss of head due to sudden enlargement (/)
w  2g w g
But, Zi = 2 ...pipe being horizontal
2 2
o L P o B
w 2g w 2g ¢
: 2 2
or, A= (ﬂ _ &J ai'h 80 -G
wow 2g 2g

Now, the force acting on liquid in the control volume (between sections 1-1 and 2-2) in the
flow direction is given by :

F,. = pyd,+p, 4, _Al) — P4,

Assuming Py = P;> We have:
F. = pyd,+p,4,-4)—py4,
= pd,—p4,= (Pl _Pz) 4, ...(i)

Consider momentum of liquid at the sections 1-1 and 2-2: momentum of liquid /sec at
section 1-1 = Mass x velocity.

= p4V x V= pAT;
Momentum of liquid/sec. at section 2-2 = pd, V, x Vy = pd, Vs
.. Change of momentum of liquid/sec.
= p4Vy —p4 Iy
But from continuity equation, we have:
4.V, =4,
4, 7,
4; = 2V1 2

or.



.. Change of momentum/sec.
4, 7,

"

- pAEPf —pA N1,

= pA, VS —px < V2

= p4, (sz - ;)

Now, Net force = Change of momentum
P1—-PD) 4y = pdy (V5 —TiV3)

or. PPy _ V2 —VV,
P

Dividing both sides by g, we get:
Pr™ P sz A
Pg g
2
p_p VWG

i

of,

wow g

...(iii)

(v pg=w)



Substituting the value of (ﬂ ~ P2 |y eqn. (i), we get:
wow

h = Vi -V, 4 4 _ vy
’ g 2g 2g
= 2V22 —2Nhhh + Vlz i sz £ Vlz S sz — 203V il Vz)2
28 2¢g 2¢
V. —V,)?
3= .(12-2)
28

Loss of Head due to Sudden Contraction

Due to sudden contraction, the stream lines converge to a minimum cross-section called the vena-contracta
then expand to fill the downstream pipe.



Let, A4, = Area of flow at section CP ? @

'

C-C, ! . :
V. = Velocity of flow at ' : p :
A4, = Area of flow at section Vi ! I *
|

o
[

2
2-2, piA, PrAr
Velocity of flow at | '

section 2—2. and T
h = Loss of head due to :

C
sudden contraction. d) @ @

Loss of head due to sudden contraction Vena-contracta
= Loss up to vena-contracta + loss due to
sudden enlargement beyond vena-contracta




2

V., -1)"

or, h. = Negligibly small + ———=
From continuity equation, we have:
Ach - AZ VZ
V. 4, ] 1
or, £ = = =
| 'T/Z Ac (Ac / AE) Cc?
V,
or, V,= —=
_ C.

Substituting the value of V1 eqn. (7), we get:

(12-3)



In general, h. = k—=

1 2
where, k = [— — IJ
C

3
: A
From experiments : C, = 0.62 + 0.38 [—2)
1

and thus the loss co-efficient & 1s a function of ratio
4 D,
— or —=
4, Dy

and, k = 0-375 for C,=0-62.
For gradual contraction (conical reducers) & 1s a function of cone angle and = 0-1.

. . . vy
NI If the value of C_ is not given then loss of head due to contraction may be taken as 0-5 2—2
g

ie., h = 0.5-2 (12-4)



Loss of Head due to Obstruction in Pipe

The loss of energy due to an obstruction in pipe takes on account of the reduction in the cross-sectional area of the pipe by
the presence of obstruction which is followed by an abrupt enlargement of the stream beyond the obstruction.

Head loss due to obstruction (h,;s) is given by the relation:

2 _.2 '
4 v .
h,. = (125 '
fobs [Cc (4 —a)} 2g (123) bl
y

where, 4 = Area of the pipe, _L; Areal a@ >
a = Maximum area of obstruction, and i

V' = Velocity of liquid 1n pipe. i

12.4.4 Loss of Head at the Entrance to Pipe Area, (4-a) C,  Area 4
Loss of head at the entrance to pipe (%) 1s given by the
relation : ;2
h.= 05— ..(12.6)
2g

where, V= Velocity of liquid m pipe.



12.4.5 Loss of Dead at the Exit of a Pipe

Loss of head at the exit of a pipe 1s denoted by /4, and 1s given by the relation:
2
s — 2.8
2g
where, V= Velocity at outlet of pipe.

12.4.6 Loss of Head due to Bend in the Pipe
In general the loss of head in bends (/,) provided in pipes may be expressed as :
V2
| 2l

2g
where, V= Mean velocity of flow of fluid, and

hy = .(12.8)

and, &£ = Co-efficient of bend; it depends upon angle of bend, radius of curvature of bend and
diameter of pipe.

12.4.7 Loss of Head in Various Pipe Fittings

The loss of head in the various pipe fittings (such as valves, couplings, etc.) may also be
represented as :

where, V= Mean velocity flow in the pipe, and k£ = value of the co-efficient; it depends on the
type of the pipe fitting.



12.5. HYDRAULIC GRADIENT AND TOTAL ENERGY LINES

The concept of hydraulic gradient line and total energy line 1s quite useful in the study of flow
of fluid in pipes. These lines may be obtained as indicated below.

Total Energy Line (T.E.L. or E.G.L.):

It 1s known that the rotal head (which 1s also total energy per unit weight) with respect to any
arbitrary datum, 1s the sum of the elevation (potential) head, pressure head and velocity head, i.e.,
P v
Total head = —+ z + —
w 2g

When the fluid flows along the pipe, there 1s loss of head (energy) and the total energy decreases
in the direction of flow. If the total energy at various points along the axis of the pipe 1s plotted and
joined by a line, the line so obtained 1s called the ‘Energy gradient line’ (E.G.L.).

In literature, energy gradient line (E.G.L.) 1s also known as ‘Total energy line’ (T.E.L.).



Hydraulic Gradient Line (H.G.L.):
P

The sum of potential (or elevation) head and the pressure head [— + z) at any point 1s called
1

the piezometric head. If a line is drawn joining the piezometric levels at various points, the line so
obtained 1s called the ‘Hydraulic gradient line.’

The following points are worth noting :

1. Energy gradient line (E.G.L.) always drops in the direction of flow because of loss of head.
2. Hydraulic gradient line (H.G.L.) may rise or fall depending on the pressure changes.

3. Hydraulic gradient line (H.G.L.) 1s always below the energy gradient line (E.G.L.) and the

— . . Ve
vertical intercept between the two 1s equal to the velocity head (2 } :
g
4. For a pipe of uniform cross-section the slope of the hydraulic gradient line is equal to the
slope of energy gradient line.

5. There is no relation whatsoever between the slope of energy gradient line and the slope of
the axis of the pipe.



12.6. PIPES IN SERIES OR COMPOUND PIPES

Fig. 12-15 shows a system of pipes in series.

Let.  D,.D,. D,
L.L, L,
V.V, V,

VRVENE
H

Diameters of pipes 1, 2 and 3 respectively,

Lengths of pipes 1, 2 and 3 respectively,

Velocities of flow through pipes 1, 2 and 3 respectively
Co-efficients of friction for pipes 1, 2 and 3 respectively, and
Difference of water level in the two tanks.

As the rate of flow (Q) of water through each pipe 1s same, therefore,
Q = A4V, =4,)V, = 4,5V,

Also, The difference in liquid surface levels = Sum of the various head losses in the pipes

ie., H
where, h.
hy,
hf
&

73
h.+hy +h . +h, +h +h; + =
I h ¢ fa € /3 Zg

0.57;

Head loss at entrance =

AALVY

Head loss due to friction in pipe 1 =
Dyx2g

. 0.5V
Head loss at contraction = 2

Af, LV

Head loss due to friction in pipe 2 =
D,x2g

()



V, —V3)°
2g

h, = Head loss due to enlargement =

2
h e Head loss due to friction in pipe 3 = AfLVs
3 D;x2g




Substituting the values in (7), we have:

V._n
H= h+h;+h +h, +h +h, +2
i 1 c fa e il
g
2 2 2 2 2 2 12
_ 051 +4f1L1V1 +0-5Vz +4f2‘£2V2 _|_(VE_V3) +4f3L3V3 +V3 (12:9)
2¢g¢ Dyx2g 2g D,x2g 2g Dyx2g 2g
If minor losses are neglected, then above equation becomes:
2 2 2
N 4 1£.L.V.
g o= AL AR | ASLT -.(12-10)
Dix2g Dyx2g Dyx2g
If, /1 = L =/f=/ then:
2 2 2
o AR AR ALY
Dix2g D,x2g D;x2g
4 v: o LV LY
- 41 4Lh 22 453 ~(12-11)

2¢| D, D, D,



12.7. EQUIVALENT PIPE

An equivalent pipe is defined as the pipe of uniform diameter having loss of head and discharge
equal to the loss of head and discharge of a compound pipe consisting of several pipes of different
lengths and diameters. The uniform diameter of the equivalent pipe i1s known as the equivalent
diameter of the series or compound pipe.

Let, L,,L,, Ly etc. = Lengths of pipes 1, 2, 3, etc.
D,, D,, D, etc. = Diameters of pipes 1, 2, 3, etc.,
H = Total head loss,
L = Length of the equivalent pipe, and
D = Diameter of the equivalent pipe.
Then, neglecting minor losses, total head loss,
hf = hfl +hf2 +hf3 + ..

2 2 2
4 f,L,V-
D x2g D,x2g D;x2g
(where, f, £, and f;, etc. are co-efficients of friction)

Also, from continuity considerations:
Q = AV, =4V, =45V;

or

3



= Zxp, =Zx D, =L x Dy,
4 4 A
_ 40 40 40
nT o3BT
nD; nD; nD;
Substituting these values in eqn. (12-12), assuming f, =/, = f;, etc. = f, we get:
\2 \2 2
4 4 4
el 5] ] nel
nD, nD; nD;
H = ' —+ | —
D x2g D,x2g D;x2g

_4ax16f0° (L, L, L
= 3 5 + 3 : + ...
n-x2g \Dj D; D;

(12-13)

Head loss 1n the equivalent pipe,

Y/ . . .
Hees e (assuming the same value of f/as in compound pipe)
X8
where, Vo= %: - LN 4Q2
“xp* ™



ﬁf
4]’11(@2 :4><16fQEf[L] (12-14)

Dx2g m* x 2g D’
From eqns. (12-13) and (12-14), we have:

4 %16 fO° (Ll L, L, +m']:4><l6fQ2 ( LJ

+ + =
n°x2g \D} D, Dj n° x2g \D’

or iﬁ = Llﬁ + Ll; - T .(12.15)
D° D’ DI D

Eqn. 12-15 is known as Dupit’s equation. If the length of the equivalent pipe is equal to the length of
the compound pipeie, L= (L, + L, + L; +...), the diameter D of the equivalent pipe may be determined
by using this equation. Sometimes a pipe of a given diameter D which is available may be required to be
used as equivalent pipe to replace a compound pipe; in this case the length of the equivalent pipe may
be required to be determined and the same may also be determined by using eqn. (12-15).



12.8. PIPES IN PARALLEL

The pipes are said to be i parallel (Fig. 12-19) when a main line divides into two or more
parallel pipes which again join together downstream and continues as a main line.

It may be seen from Fig. 12-19 that the rate of discharge in the main line 1s equal to the pipes.

Thus, 0O=0,+0, .(12-16)
When the pipes are arranged in parallel, the Pipe 1
loss of head in each pipe (branch) is same. Dy, Ly, Vi,

. Loss of head i pipe 1 = Loss of head in

(—VQI —»

pipe 2. Main line (
2 2 .
o L AALVT _AfLY >0
’ /' D/x2g D,x2g | B
Qz _"'
(12-17)
When fi = f,, then: Py L2 V2 \
’ - s ' Pipe 2
2 2 Fig. 12.19
Lh - _Lhh ..(12-18) °

D x2g D, x2g



12.9. SYPHON

A syphon is a long bent pipe employed for carrying water from a reservoir at a higher elevation
to another reservoir at a lower elevation when the two reservoirs are separated by a hill or high

level ground in between as shown in Fig. 12-39.
Summit

Reservoir Syphon

Reservoir



The highest point (S) of the syphon 1s called the summit. The pressure at the poimnt S 1s less
than atmospheric pressure (since S lies above the free water surface in the tank 4). The pressure at
S can be reduced theoretically to — 10-3 m of water but in actual practice this pressure 1s only — 7-6
m of water (or 10-3 — 7-6 = 2:7 m of water absolute). When the pressure at .S becomes less than 2-7
m of water absolute, the dissolved air and other gases would come out from water and collect at the
summit. Therefore syphon should be so laid that no section of the pipe will be more than 7-6 m above
the hydraulic gradient at that section. Moreover, in order to limit the reduction of the pressure at the
summit the length of the in/er-leg (r1sing portion of the syphon) of the syphon 1s also required to be
limited (this 1s so because, if the inlet leg 1s very long a considerable loss of head due to friction 1s
caused, resulting in further reduction of the pressure at the summit).



12.10. POWER TRANSMISSION THROUGH PIPES

The transmission of power through pipes carrying water or other liquids 1s commonly used
for working of several hydraulic machines. The hydruaulic power transmitted by a pipe however
depends on (7) the discharge passing through the pipe and (i7) the total head of water (or liquid).
Consider a pipe AB connected to a high level storage tank as shown in Fig. 12-43.

Let, H = Head of water available at the inlet of pipe, m,

= Length of the pipe, m,

= Diameter of the pipe, m, - |[€—Tank

A Pipe B
—» |/

L
D
V' = Velocity of water i the pipe nv/s,
f = Co-efficient of friction, and

h, = Loss of head in the pipe AB, due to friction, m.

Weight of water flowing through the pipe per second P I E |
= wO=wAdlV ..(7)




(where, O = discharge of water through the pipe, m’/s)
and, net head of water available at B (neglecting minor losses)

2
Dx2g

Also, The efficiency of transmission,
H - hy
H
{Weight of water ﬂﬂwing/sec}
kW

n:

x head of water
1000

= wQ (H— hf) kW
(where, w = 9-81 kN/m’ for water)

= wAV H—4ﬂV kW
Dx2g

3
= wA HV—4fLV kW
Dx2g

And, Power, P =

...(iii)



It 1s evident from eqn. (777) that power transmitted depends upon the velocity of water (¥), as the
other things are constant.

. Power transmitted will be maximum, when:

P _
dV
| 5
or. A | LR =0
dVv Dx2g )|
| 2\
or, | g VB ) g
_ Dx2g )
2
or, H —3x e 8 = 0
Dx2g
2
or, H-3h, = 0 hf:4fL
s Dx2g
or, H = 3hf
_ B H
or, hf = 3



It means that power transmitted through the pipe is maximum, when head lost due to friction in

the pipe is equal to g of the total supply head.

The maximum efficiency would correspond to the maximum power transmitted and hence
maximum efficiency,

H —

H 2
= ZH
3 _3

n = zé or 66:7%

H H

12.11. FLOW THROUGH NOZZLE AT THE END OF A PIPE

Refer to Fig. 12-44. A nozzle is a tapering mouthpiece, which is fitted to the outlet end of a
pipe. The total energy at the end of the pipe consists of pressure energy and kinetic energy. By fitting
the nozzle at the end of a pipe, the total energy 1s converted into kinetic energy. A high velocity 1s
required 1n the fields of power development, fire fighting, mining, etc.

Fig. 12-44 shows a nozzle fitted at the end of a pipe connected to a reservoir.

Nozzle
Pipe p Jet
5 - Y
D — V) — X ——_— =
Yy _




Let, = Diameter of the pipe,

= Length of the pipe,

= Diameter of the nozzle,

‘elocity of flow 1n pipe,

= Velocity of flow at the outlet of the nozzle,

= Co-efficient of friction for the pipe, and

s/ R NS
I

= Height of water level in the reservoir above the centre-line of the nozzle.
Head lost due to friction 1n pipe,

2
. _ ALV

s Dx2g

.. Head available at the base of the nozzle .
4LV
= H — hf = H —
Dx2g

Assuming the minor losses and losses in the nozzle to be negligible, we have:

Total head at the nozzle outlet = e
1 e ALV v
H=h+ v AfL ¥

2g_D><2g 2g

-.G)



From continuity consideration, we have:
AV = av

(where 4 and a are the areas of the pipe and area of the nozzle at outlet respectively)

Or, V = —

Substituting the value of 7 1n eqn. (7), we get:

H

Discharge through the nozzle

av
A
4]102*«'2 v?
DxngAz 2g
v: (14 4/La*
2g | Dx 4’

2gH

2

1+4fL><a

D 2

.(12.20)



12.11.1 Power Transmitted through the Nozzle

Mass of liquid flowing per second at the outlet ofthe nozzle, m = pav

The K.E. of the jet at outlet of the nozzle
L g d , 1 3

— Emv":ixpavxv'zipav

1
Power available at the outlet of nozzle = 5 pav3 watts

Also, power available at the inlet of pipe = wQH
.. Efficiency of power transmission through the nozzle,

L .3
_ Power available at the outlet of nozzle _ 2 pav
1 Power available at the inlet of pipe wQH
But, w=pg and QO=av
lpav3 2
n = 2 S, 1 = . (12:21)
pg xavx H 2gH AfL  a*
1+ X
D 4
- Vi 2sll 5 ...eqn. (12-:20)
1+ alic i
b D& |




12.11.2 Condition for Transmission of Maximum Power Through Nozzle

9

v’ _4fLV2 +v“
2g Dx2g 2g

We know that, H = hf -

2 4 2
or, vV = H — I

2g Dx2g
But power transmitted through the nozzle,

P = lpavszépavxvz

2
.
= lpav 2g H—4fLV
2 Dx2g
.
= wav | H — 4LV .(12-22)
Dx2g

From continuity consideration, we have:

AV = av or V:ﬂ
A

Substituting the value of V'1n eqn. (12:22), we get:

7 ﬁljle;rz’*.’2 |
D><2g><A2_

_[12:22(a)]

Power transmitted through nozzle, P = wav (

. . dP
Power transmitted will be maximum, when — =0

dv



dv Dx2g  4°
~ 2 3\
oL, i wa | Hv — AL KHE =0
dv | Dx2g  4°
2.2 3
or —3x 4.fl‘ }{Vz_ﬂ a v :VE
D x2g A° )
7 )
Dx2g
H
of, Irf = 3 ..(12-23)

The eqn. (12-23) indicates that the power transmitted by a nozzle is maximum when the head
lost due to friction in pipe is equal to one-third the total head supplied at the inlet of pipe.



12.11.3 Diameter of the Nozzle for Transmitting Maximum Power
2

We know that, H= hy+ i
2g
Eat H = 3h; [From eqn. (12-22)]
2 2

2 x4 fLV? v?

Dx2g 2g

For continuity considerations, we have:

AV = av or V=ﬂ
A

2><4]‘L><c12v2 v’
Dx2gx A* 2g

2 A [8
or, A—z 4 841 or | 51= 44 (1 2:24)
a D a D

Eqn. (12-24) gives the ratio between the areas of the supply pipe and the nozzle for maximum
power transmission.




Substituting the values of 4 and a 1n eqn. (12-24) and squaring both sides, we have:

/ 52
T 2
—x D-
| - 82
Exdz D
4 ).
4
or, D _ 3 or D5=8ﬂd4
d* D

D5 1/4
d = (] (12-25)
8 1L



12.12. WATER HAMMER IN PIPES

In a long pipe, when the flowing water is suddenly brought to rest by closing the valve or by any
similar cause, there will be a sudden rise in pressure due to the momentum of water being destroyed.
A pressure wave 1s transmitted along the pipe. A sudden rise in pressure has the effect of hammering

action on the walls of the pipe. This phenomenon of sudden rise in presssure is known as water
hammer or hammer blow. The magnitude of pressure rise depends on :

(i) The speed at which valve is closed,
(ii) The velocity of flow,
(iii) The length of pipe, and
(iv) The elastic properties of the pipe material as well as that of the flowing fluid.
The rise 1n pressure 1n some cases may be so large that the pipe may even burst and therefore it
1s essential to take into account this pressure rise in the design of the pipes.
12.12.1 Gradual Closure of Valve

Consider a long pipe carrying liquid (Fig. (12-45)) and provided with a valve which 1s closed
gradually.

<< L

! Valve

/—Pipe T,

—. 9




Let, = Area of cross-section of the pipe,

A
L = Length of the pipe,
V' = Velocity of flow of water in the pipe,
t = Time required to close the valve (in seconds), and

p = Intensity of pressure wave produced.

The mass of liquid contained 1n the pipe 1s = pA4AL

Assuming that the rate of closure of the valve 1s so adjusted that the liquid column in the pipe 1s
brought to rest with a uniform retardation; from an intial velocity ¥ to zero in time 7 seconds, we have:

V-0_V
f t
. The axial force available for producing retardation

Retardation of water =

= Mass x retardation

V
Also, force due to pressure wave 1s = p.4 .. (77)

Equating the two forces given by equns. (7) and (77), we have:



V

pAL x=- = p x4
or, p = g .(12:26)

LV pLV LV
Head of pressure, H = g0y PP
w wXt pgt gt

ie., = — ..(12:27)
gt
(7) The closure of valve 1s said to be gradual when t > C ..{12-28)
27
(i7) The closure of valve 1is said to be instantaneous when t < C i(12:29)

where, C = velocity of the pressure wave.

12.12.2 Instantaneous Closure of Valve in Rigid Pipes

Eqn. (11-26) indicates that when the valve 1s closed instantaneously (i.e., = 0), the inertia head
should rise to infinity. However, in practice, it is not possible to close the valve instantaneously,
as 1t always takes some time. Thus, even for a very rapid closure of the valve, as observed during
experimentation, the pressure rise i1s quite finite and measurable. Moreover, eqn. (12:26) has been
derived on the assumption that the liquid is incompressible. This assumption 1s incorrect, because at
very high pressures even liquids get compressed to some extent and behave like cmpressible fluids.



Consider a pipe of length L and area of cross-section A4 (Fig. 12:45) carrying water which 1s
flowing through 1t at a velocity V. When the valve 1s closed mstantaneously the K.E. of the flowing
water 1s converted into strain energy of water (neglecting effect of friction and assuming the pipe

wall to be perfectly rigid).

LnssofK.E.:%mVE:% AL x V* (-m=pxAxL)
. . 1( p’ 1 p*
Gain of strain energy = — [%J x volume = =~ £ x 4L

2 2 K
{where, k = Bulk modulus of elasticity of water, aud}

p = Intensity of pressure wave produced.

Equating the loss of K.E. to the gain of strain energy, we get:
2

Loarxvr = L2, 4
2 2 K
or, p2 -1 ALV* KE:pKVZ
2 AL



2
p = NpKV? =V JpK =V e~
p
or, p = VpC ...(12-30)
| — | | |
[Where, C = ’—, C being the velocity of pressure wave.]
| P |

12.12.3 Instantaneous Closure of Valve in Elastic Pipes

As shown in Fig. 1245, consider a pipe of length L, diameter D, thickness 7 (small compared to
diameter).

Let, = Increase of pressure due to water hammer,

p
E = Modulus of elasticity of pipe material, and

1 . : . :
— = Poisson’s ratio for pipe material.
m

When the valve 1s closed intantaneously, rise of pressure takes place due to which circumferential
and longitudinal stresses are produced in the pipe wall; these stresses are given as (from knowledge

of strength of materials):

D D
c, = P= and o; = P
| 2t At
where, 6, = Circumferential stress, and

c; = Longitudinal stress.



Also, strain energy stored in the pipe material per unit volume i1s

2 L(02+02_20c01)

2E (€ I m

j pD  pD
2 \ 2 2

B A4 (PD) +(£) PN T &

2E |\ 2t At m
A p2D2+p2D2 pzDz}

2E| 4r*  16*  Amt’

: 1
Assuming, — = 1/4, we have:

+

i 2
: . dlile s
Strain energy per unit volume =

2E | 4+*

Total strain energy stored in pipe material

16¢°

p2D2 _pzDz}—pzDz

16¢* SEt*

2 2
-D- . .
=2 - — x total volume of pipe material
S8Et”
o T8 2 3
= pD,) xTrDth:p =
8Et’ 8Lt

p*xnD*xDL  p*ADL

8Et 2Et

[ . 4 (area of the pipe) = % x D]



Loss of K.E. of water = % mV?* = % pAL x p*
: . . 1 p2 1 pz
Gain of strain energy in water = — | — | x volume = — =— x AL
2\ K 2 K

Also, The loss of K.E. of water = Gain of strain energy in water + strain energy stored in
material.

1 l p’ *ADL
AL xV? = P oy P
2 2 2FEt
- . AL
Dividing both sides by 5 , we get
2 2
sz = P pD:pz(i_—i—E]
K Et K Et
pz _ sz
35
__I__
K Et
pV? p
o1 p = — =V x . ..(12-31)
( 1 D] ( 1 D]
K Et \ K Er




12.12.4 Time required by Pressure Wave to travel from the Valve to the Tank
and from Tank to Valve

Distance travelled from valve to tank and back

Time taken, 1 = ,
Velocity of pressure wave

L+ L 2L 2L

- e, I =—

C & C
Length of the pipe, and

..(12:32)

t~
|

where,
C = Velocity of pressure wave.
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