Concept of Gibbs Triangle

MSE-S203
 (Phase Equilibria in Materials)

Ankur Katiyar
Assistant Professor, MSME Department UIET, CSJM University

Ternary Phase Diagram

$>$ The Gibbs Triangle

Ternary Phase Diagram

$>$ Overall Composition

- The concentration of each of the three components Can be expressed as either "wt. \%" or "molar \%".
- Sum of the concentration of the three components must add up to 100%.
- There are three ways of determining the overall composition.

Ternary Phase Diagram

$>$ Overall Composition

- Method 1:

- Let the overall composition be represented by the point X .
- Draw lines passing through X , and parallel to each of the sides.

Ternary Phase Diagram

$>$ Overall Composition

- Method 1:

- Where the line $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$ intersects the side AB tells us the concentration of component B in X .
- The concentrations of A and C , in X , can be determined in an identical manner.

Ternary Phase Diagram

$>$ Overall Composition

- Method 2:

- Draw lines through X, parallel to the sides of the Gibbs Triangle.
- A'C' intersects AB at $A^{\prime} B^{\prime} C^{\prime \prime}$ intersects $A B$ at B^{\prime}.

Ternary Phase Diagram

$>$ Overall Composition

- Method 2:

- Concentration of B
$=\mathrm{AA}^{\prime}$ Concentration of $\mathrm{C}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}$
Concentration of $\mathrm{A}=$ B'B.

Ternary Phase Diagram

$>$ Overall Composition

- Method 3:
$\% A=\frac{M X}{M A}$
$\% B=\frac{N X}{N B}$
$\% C=\frac{L X}{L C}$
- Inverse Lever Rule:

Draw straight lines from each vertex, through X.
$\% A=A X / A M$
$\% B=B X / B N$
$\% C=C X / C L$

Ternary Phase Diagram

$>$ Overall Composition
1- Find out the composition at point P. where one part of S mix with 3 parts of L.

- Answer:
$\% A=35$
$\% B=40$
$\% C=25$

