Control Structures

Control Statements provide us flexibility to control the flow
of execution
Slides include:-
Logical operators applications
Precedence order
Nested if's
Switch-Case
For loop

Objectives and Learning Outcoms

- Learn Logical operator applications
- Learn useful selection statement
- Learn interactive program implementation and nested conditions
- Advantages of multiway branching
- Iterations and its implementation

Logical Operators

- Conditions in selection statements and loops can use logical operators to form complex expressions

$$
\begin{aligned}
& \text { if }(b>=a \& \& a>=c) \\
& \quad \max =b ; \\
& \text { if }(a>=b \& \& b>=c) \\
& \quad \max =a ; \\
& \text { if }(c>=a \& \& a>=b) \\
& \quad \max =c ;
\end{aligned}
$$

- Logical operators have precedence relationship between themselves and other operators

Operator Precedence

Highest

Lowest

Nested If Statement

- The if-true-statement and if-false-statement of an if statement could be another if statement
- These are called nested if statements

$$
\begin{aligned}
& \text { if }(a>=b) \\
& \text { if }(b>=c) \min =c \text {; } \\
& \text { else } \min =b \text {; } \\
& \text { else } \\
& \text { if }(a>=c) \min =c \text {; } \\
& \text { else } \min =a \text {; }
\end{aligned}
$$

- An else clause is matched to nearest if (no matter what the indentation implies)
import java.util.Scanner;
class data
\{
public static void main(String []a)
\{
Scanner s=new Scanner(System.in); double $\mathrm{p}=\mathrm{s}$. nextDouble();
if ($p>=90$) System.out.println("You got an A"); else if ($>=80$) System.out.println("You got a B"); else if(score>=60) System.out.println("You got a C"); else if(score>=40) System.out.println("You got a D"); else
System.out.println("You got F");
\}\}

The Switch Statement

- The switch statement provides another means to decide which statement to execute next
- The switch statement evaluates an expression, then attempts to match the result to one of several possible cases
- Each case contains a value and a list of statements
- The flow of control transfers to statement list associated with the first value that matches

The Switch-case Statement

- A switch statement can have an optional default case which has no associated value
- If the default case is present, control will transfer to it if no other case value matches
- The default case can be positioned anywhere in the switch, it is usually placed at the end
- If there is no default case, and no other value matches, control falls through to the next statement after the switch

The Switch Statement

- Often a break statement is used as the last statement in each case's statement list
- A break statement causes control to transfer to the end of the switch statement
- If a break statement is not used, the flow of control will continue into the next case
- The expression of a switch statement must result in an integral data type, like an integer or character
- You cannot perform relational checks with a switch staement
switch(num) \{
case 0:
case 1:
case 2 :
case 3:
case 4: System.out.println("F"); break;
case 5: System.out.println("D"); break;
case 6:
case 7: System.out.println("C"); break;
case 8: System.out.println("B"); break;
case 9:
case10: System.out.println("A");

Iterative Stmt- For Statement

- The for statement has the following syntax:
for (initialization ; condition ; increment)
\{ statement1;
staetment2;
\}
- The initialization is executed once before the loop begins
- The statements are executed until the condition becomes false
- The increment portion is executed at the end of each iteration

