
Deadlock

Safe State

Safe State

• When a process requests an available resource,
system must decide if immediate allocation leaves
the system in a safe state

• System is in safe state if there exists a sequence <P1,
P2, …, Pn> of ALL the processes in the systems such
that for each Pi, the resources that Pi can still
request can be satisfied by currently available
resources + resources held by all the Pj, with j < I

• That is:
– If Pi resource needs are not immediately available, then

Pi can wait until all Pj have finished
– When Pj is finished, Pi can obtain needed resources,

execute, return allocated resources, and terminate
– When Pi terminates, Pi +1 can obtain its needed

resources, and so on

Basic Facts

• If a system is in safe state  no
deadlocks

• If a system is in unsafe state 
possibility of deadlock

• Avoidance  ensure that a system
will never enter an unsafe state.

Safe, Unsafe, Deadlock State

Avoidance Algorithms

• Single instance of a resource type

– Use a resource-allocation graph

• Multiple instances of a resource type

– Use the banker’s algorithm

Resource-Allocation Graph Scheme

• Claim edge Pi  Rj indicated that process Pj
may request resource Rj; represented by a
dashed line

• Claim edge converts to request edge when a
process requests a resource

• Request edge converted to an assignment
edge when the resource is allocated to the
process

• When a resource is released by a process,
assignment edge reconverts to a claim edge

• Resources must be claimed a priori in the
system

Resource-Allocation Graph

Unsafe State In Resource-Allocation Graph

Resource-Allocation Graph Algorithm

• Suppose that process Pi requests
a resource Rj

• The request can be granted only
if converting the request edge to
an assignment edge does not
result in the formation of a cycle
in the resource allocation graph

Banker’s Algorithm

• Multiple instances

• Each process must a priori claim
maximum use

• When a process requests a resource it
may have to wait

• When a process gets all its resources it
must return them in a finite amount of
time

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] = k,
there are k instances of resource type Rj available

• Max: n x m matrix. If Max [i,j] = k, then process Pi
may request at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi
is currently allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need
k more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

Safety Algorithm

1. Let Work and Finish be vectors of length m
and n, respectively. Initialize:

Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system
is in a safe state

Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi. If
Requesti [j] = k then process Pi wants k instances of
resource type Rj
1. If Requesti  Needi go to step 2. Otherwise, raise

error condition, since process has exceeded its
maximum claim

2. If Requesti  Available, go to step 3. Otherwise Pi
must wait, since resources are not available

3. Pretend to allocate requested resources to Pi by
modifying the state as follows:

Available = Available – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

 If safe  the resources are allocated to Pi

 If unsafe  Pi must wait, and the old resource-allocation
state is restored

Example of Banker’s Algorithm
• 5 processes P0 through P4;

3 resource types:
A (10 instances), B (5instances), and C (7

instances)
• Snapshot at time T0:

Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

Example (Cont.)
• The content of the matrix Need is defined to be Max –

Allocation

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4, P2,
P0> satisfies safety criteria

Example: P1 Request (1,0,2)

• Check that Request  Available (that is, (1,0,2)  (3,3,2)
 true

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 2 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

• Executing safety algorithm shows that sequence < P1,
P3, P4, P0, P2> satisfies safety requirement

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

Deadlock Detection

• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme

Single Instance of Each Resource Type

• Maintain wait-for graph
– Nodes are processes
– Pi  Pj if Pi is waiting for Pj

• Periodically invoke an algorithm that
searches for a cycle in the graph. If there is a
cycle, there exists a deadlock

• An algorithm to detect a cycle in a graph
requires an order of n2 operations, where n is
the number of vertices in the graph

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Several Instances of a Resource Type

• Available: A vector of length m indicates the
number of available resources of each type

• Allocation: An n x m matrix defines the
number of resources of each type currently
allocated to each process

• Request: An n x m matrix indicates the
current request of each process. If Request
[i][j] = k, then process Pi is requesting k more
instances of resource type Rj.

Detection Algorithm

1. Let Work and Finish be vectors of length m
and n, respectively Initialize:
(a) Work = Available
(b)For i = 1,2, …, n, if Allocationi  0, then

Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:
(a)Finish[i] == false
(b)Requesti Work

If no such i exists, go to step 4

Detection Algorithm (Cont.)

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1  i  n, then the system is
in deadlock state. Moreover, if Finish[i] == false, then Pi is
deadlocked

Algorithm requires an order of O(m x n2) operations to detect
whether the system is in deadlocked state

Recovery from Deadlock: Process Termination

• Abort all deadlocked processes

• Abort one process at a time until the
deadlock cycle is eliminated

Recovery from Deadlock: Resource Preemption

• Selecting a victim – minimize cost

• Rollback – return to some safe state,
restart process for that state

• Starvation – same process may
always be picked as victim, include
number of rollback in cost factor

Reference

• Abraham Silberschatz and Peter Baer Galvin,
“Operating System Concepts”, Addison-Wesley

