
Deadlock

Safe State

Safe State

• When a process requests an available resource,
system must decide if immediate allocation leaves
the system in a safe state

• System is in safe state if there exists a sequence <P1,
P2, …, Pn> of ALL the processes in the systems such
that for each Pi, the resources that Pi can still
request can be satisfied by currently available
resources + resources held by all the Pj, with j < I

• That is:
– If Pi resource needs are not immediately available, then

Pi can wait until all Pj have finished
– When Pj is finished, Pi can obtain needed resources,

execute, return allocated resources, and terminate
– When Pi terminates, Pi +1 can obtain its needed

resources, and so on

Basic Facts

• If a system is in safe state no
deadlocks

• If a system is in unsafe state
possibility of deadlock

• Avoidance ensure that a system
will never enter an unsafe state.

Safe, Unsafe, Deadlock State

Avoidance Algorithms

• Single instance of a resource type

– Use a resource-allocation graph

• Multiple instances of a resource type

– Use the banker’s algorithm

Resource-Allocation Graph Scheme

• Claim edge Pi Rj indicated that process Pj
may request resource Rj; represented by a
dashed line

• Claim edge converts to request edge when a
process requests a resource

• Request edge converted to an assignment
edge when the resource is allocated to the
process

• When a resource is released by a process,
assignment edge reconverts to a claim edge

• Resources must be claimed a priori in the
system

Resource-Allocation Graph

Unsafe State In Resource-Allocation Graph

Resource-Allocation Graph Algorithm

• Suppose that process Pi requests
a resource Rj

• The request can be granted only
if converting the request edge to
an assignment edge does not
result in the formation of a cycle
in the resource allocation graph

Banker’s Algorithm

• Multiple instances

• Each process must a priori claim
maximum use

• When a process requests a resource it
may have to wait

• When a process gets all its resources it
must return them in a finite amount of
time

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] = k,
there are k instances of resource type Rj available

• Max: n x m matrix. If Max [i,j] = k, then process Pi
may request at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi
is currently allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need
k more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

Safety Algorithm

1. Let Work and Finish be vectors of length m
and n, respectively. Initialize:

Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system
is in a safe state

Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi. If
Requesti [j] = k then process Pi wants k instances of
resource type Rj
1. If Requesti Needi go to step 2. Otherwise, raise

error condition, since process has exceeded its
maximum claim

2. If Requesti Available, go to step 3. Otherwise Pi
must wait, since resources are not available

3. Pretend to allocate requested resources to Pi by
modifying the state as follows:

Available = Available – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

 If safe the resources are allocated to Pi

 If unsafe Pi must wait, and the old resource-allocation
state is restored

Example of Banker’s Algorithm
• 5 processes P0 through P4;

3 resource types:
A (10 instances), B (5instances), and C (7

instances)
• Snapshot at time T0:

Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

Example (Cont.)
• The content of the matrix Need is defined to be Max –

Allocation

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4, P2,
P0> satisfies safety criteria

Example: P1 Request (1,0,2)

• Check that Request Available (that is, (1,0,2) (3,3,2)
 true

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 2 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

• Executing safety algorithm shows that sequence < P1,
P3, P4, P0, P2> satisfies safety requirement

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

Deadlock Detection

• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme

Single Instance of Each Resource Type

• Maintain wait-for graph
– Nodes are processes
– Pi Pj if Pi is waiting for Pj

• Periodically invoke an algorithm that
searches for a cycle in the graph. If there is a
cycle, there exists a deadlock

• An algorithm to detect a cycle in a graph
requires an order of n2 operations, where n is
the number of vertices in the graph

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Several Instances of a Resource Type

• Available: A vector of length m indicates the
number of available resources of each type

• Allocation: An n x m matrix defines the
number of resources of each type currently
allocated to each process

• Request: An n x m matrix indicates the
current request of each process. If Request
[i][j] = k, then process Pi is requesting k more
instances of resource type Rj.

Detection Algorithm

1. Let Work and Finish be vectors of length m
and n, respectively Initialize:
(a) Work = Available
(b)For i = 1,2, …, n, if Allocationi 0, then

Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:
(a)Finish[i] == false
(b)Requesti Work

If no such i exists, go to step 4

Detection Algorithm (Cont.)

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1 i n, then the system is
in deadlock state. Moreover, if Finish[i] == false, then Pi is
deadlocked

Algorithm requires an order of O(m x n2) operations to detect
whether the system is in deadlocked state

Recovery from Deadlock: Process Termination

• Abort all deadlocked processes

• Abort one process at a time until the
deadlock cycle is eliminated

Recovery from Deadlock: Resource Preemption

• Selecting a victim – minimize cost

• Rollback – return to some safe state,
restart process for that state

• Starvation – same process may
always be picked as victim, include
number of rollback in cost factor

Reference

• Abraham Silberschatz and Peter Baer Galvin,
“Operating System Concepts”, Addison-Wesley

