
Page | 1

DISTRIBUTED SYSTEMS

Introduction

A distributed system is a software system in which components located on networked

computers communicate and coordinate their actions by passing messages. The components

interact with each other in order to achieve a common goal.

Distributed systems Principles

A distributed system consists of a collection of autonomous computers, connected

through a network and distribution middleware, which enables computers to coordinate their

activities and to share the resources of the system, so that users perceive the system as a single,

integrated computing facility.

Centralised System Characteristics

 One component with non-autonomous parts

 Component shared by users all the time

 All resources accessible

 Software runs in a single process

 Single Point of control

 Single Point of failure

Distributed System Characteristics

 Multiple autonomous components

 Components are not shared by all users

 Resources may not be accessible

 Software runs in concurrent processes on different processors

 Multiple Points of control

 Multiple Points of failure

Examples of distributed systems and applications of distributed computing include the following:

 telecommunication networks:

 telephone networks and cellular networks,

 computer networks such as the Internet,

 wireless sensor networks,

 routing algorithms;

https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Telephone_network
https://en.wikipedia.org/wiki/Cellular_network
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Wireless_sensor_networks
https://en.wikipedia.org/wiki/Routing_algorithm

Page | 2

 network applications:

 World wide web and peer-to-peer networks,

 massively multiplayer online games and virtual reality communities,

 distributed databases and distributed database management systems,

 network file systems,

 distributed information processing systems such as banking systems and airline reservation

systems;

 real-time process control:

 aircraft control systems,

 industrial control systems;

 parallel computation:

 scientific computing, including cluster computing and grid computing and various volunteer

computing projects (see the list of distributed computing projects),

 distributed rendering in computer graphics.

Common Characteristics

Certain common characteristics can be used to assess distributed systems

 Resource Sharing

 Openness

 Concurrency

 Scalability

 Fault Tolerance

 Transparency

Resource Sharing

 Ability to use any hardware, software or data anywhere in the system.

 Resource manager controls access, provides naming scheme and controls concurrency.

 Resource sharing model (e.g. client/server or object-based) describing how

 resources are provided,

 they are used and

 provider and user interact with each other.

Openness

 Openness is concerned with extensions and improvements of distributed systems.

 Detailed interfaces of components need to be published.

 New components have to be integrated with existing components.

 Differences in data representation of interface types on different processors (of

different vendors) have to be resolved.

https://en.wikipedia.org/wiki/World_wide_web
https://en.wikipedia.org/wiki/Peer-to-peer_network
https://en.wikipedia.org/wiki/Massively_multiplayer_online_game
https://en.wikipedia.org/wiki/Virtual_reality
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Distributed_database_management_system
https://en.wikipedia.org/wiki/Distributed_file_system
https://en.wikipedia.org/wiki/Aircraft
https://en.wikipedia.org/wiki/Industrial_control_systems
https://en.wikipedia.org/wiki/Parallel_computation
https://en.wikipedia.org/wiki/Scientific_computing
https://en.wikipedia.org/wiki/Cluster_computing
https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Volunteer_computing
https://en.wikipedia.org/wiki/List_of_distributed_computing_projects
https://en.wikipedia.org/wiki/Distributed_rendering

Page | 3

Concurrency

Components in distributed systems are executed in concurrent processes.

 Components access and update shared resources (e.g. variables, databases, device
drivers).

 Integrity of the system may be violated if concurrent updates are not coordinated.

o Lost updates

o Inconsistent analysis

Scalability

 Adaption of distributed systems to

• accomodate more users

• respond faster (this is the hard one)

 Usually done by adding more and/or faster processors.

 Components should not need to be changed when scale of a system increases.

 Design components to be scalable

Fault Tolerance

Hardware, software and networks fail!

 Distributed systems must maintain availability even at low levels of

hardware/software/network reliability.

 Fault tolerance is achieved by

• recovery

• redundancy

Transparency

Distributed systems should be perceived by users and application programmers as a whole rather

than as a collection of cooperating components.

• Transparency has different dimensions that were identified by ANSA.

• These represent various properties that distributed systems should have.

Page | 4

Access Transparency

Enables local and remote information objects to be accessed using identical operations.

• Example: File system operations in NFS.

• Example: Navigation in the Web.

• Example: SQL Queries

Location Transparency

Enables information objects to be accessed without knowledge of their location.

• Example: File system operations in NFS

• Example: Pages in the Web

• Example: Tables in distributed databases

Concurrency Transparency

Enables several processes to operate concurrently using shared information objects without

interference between them.

• Example: NFS

• Example: Automatic teller machine network

• Example: Database management system

Replication Transparency

Enables multiple instances of information objects to be used to increase reliability and

performance without knowledge of the replicas by users or application programs

• Example: Distributed DBMS

• Example: Mirroring Web Pages.

Failure Transparency

• Enables the concealment of faults

• Allows users and applications to complete their tasks despite the failure of other

components.

• Example: Database Management System

Migration Transparency

Allows the movement of information objects within a system without affecting the operations of

users or application programs

• Example: NFS

• Example: Web Pages

Performance Transparency

Allows the system to be reconfigured to improve performance as loads vary.

Page | 5

• Example: Distributed make.

Scaling Transparency

Allows the system and applications to expand in scale without change to the system structure or
the application algortithms.

• Example: World-Wide-Web

• Example: Distributed Database

Distributed Systems: Hardware Concepts

• Multiprocessors

• Multicomputers

Networks of Computers

Multiprocessors and Multicomputers
Distinguishing features:

• Private versus shared memory

• Bus versus switched interconnection

Networks of Computers

Page | 6

High degree of node heterogeneity:

• High-performance parallel systems (multiprocessors as well as multicomputers)

• High-end PCs and workstations (servers)

• Simple network computers (offer users only network access)

• Mobile computers (palmtops, laptops)

• Multimedia workstations

High degree of network heterogeneity:

• Local-area gigabit networks

• Wireless connections

• Long-haul, high-latency connections

• Wide-area switched megabit connections

Distributed Systems: Software Concepts

Distributed operating system
_ Network operating system

_ Middleware

Distributed Operating System

Some characteristics:

_ OS on each computer knows about the other computers
_ OS on different computers generally the same

_ Services are generally (transparently) distributed across computers

Page | 7

Network Operating System

Some characteristics:
_ Each computer has its own operating system with networking facilities
_ Computers work independently (i.e., they may even have different operating systems)

_ Services are tied to individual nodes (ftp, telnet, WWW)

_ Highly file oriented (basically, processors share only files)

Distributed System (Middleware)

Some characteristics:

_ OS on each computer need not know about the other computers
_ OS on different computers need not generally be the same

_ Services are generally (transparently) distributed across computers

Page | 8

-

Need for Middleware

Motivation: Too many networked applications were
hard or difficult to integrate:

_ Departments are running different NOSs
_ Integration and interoperability only at level of primitive NOS services

_ Need for federated information systems:

– Combining different databases, but providing a single view to applications

– Setting up enterprise-wide Internet services, making use of existing information systems

– Allow transactions across different databases

– Allow extensibility for future services (e.g., mobility, teleworking, collaborative applications)

_ Constraint: use the existing operating systems, and treat them as the underlying environment

(they provided the basic functionality anyway)

Communication services: Abandon primitive socket based message passing in favor of:

_ Procedure calls across networks

_ Remote-object method invocation

_ Message-queuing systems

_ Advanced communication streams

_ Event notification service

Information system services: Services that help manage data in a distributed system:

_ Large-scale, system wide naming services

_ Advanced directory services (search engines)

_ Location services for tracking mobile objects

_ Persistent storage facilities

_ Data caching and replication

Control services: Services giving applications control over when, where, and how they access

Page | 9

_ Distributed transaction processing

_ Code migration

Security services: Services for secure processing and communication:

_ Authentication and authorization services

_ Simple encryption services

_ Auditing service

	DISTRIBUTED SYSTEMS
	Introduction
	Distributed systems Principles
	Centralised System Characteristics
	Distributed System Characteristics
	Common Characteristics
	Resource Sharing
	Openness
	Concurrency
	Scalability
	Fault Tolerance
	Transparency
	Access Transparency
	Location Transparency
	Concurrency Transparency
	Replication Transparency
	Failure Transparency
	Migration Transparency
	Performance Transparency
	Scaling Transparency
	Distributed Systems: Hardware Concepts
	Networks of Computers
	High degree of network heterogeneity:
	Distributed Systems: Software Concepts
	Distributed Operating System Some characteristics:
	Network Operating System Some characteristics:
	Distributed System (Middleware) Some characteristics:
	Need for Middleware

