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INTRODUCTION

Our knowledge about the brain has increased dramatically
in the last decades due to the incorporation of new and
extraordinary techniques. In particular, fast computers
enable more realistic and complex simulations and boosted
the emergence of computational neuroscience. With
modern acquisition systems we can record simultaneously
up to few hundred neurons and deal with issues like
population coding and neural synchrony. Imaging techni-
ques such as magnetic resonance imaging (MRI) allow an
incredible visualization of the locus of different brain func-
tions. On the other extreme of the spectrum, molecular
neurobiology has been striking the field with extraordinary
achievements. In contrast to the progress and excitement
generated by these fields of neuroscience, electroencepha-
lography (EEG) and evoked potentials (EPs) have clearly
decreased in popularity. What can we learn from scalp
electrodes recordings, when one can use sophisticated
devices like MRI, or record from dozens of intracranial
electrodes? Still a lot.
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There are mainly three advantages of the EEG: (1) it is
relatively inexpensive; (2) it is noninvasive, and therefore it
can be used in humans, (3) it has a very high temporal
resolution, thus enabling the study of the dynamics of brain
processes. These features make the EEG a very accessible
and useful tool. It is particularly interesting for the analysis
of high level brain processes that arise from the activity of
large cell assemblies and may be poorly reflected by single
neuron properties. Moreover, such processes can be well
localized in time and even be reflected in time varying
patterns (e.g., brain oscillations) that are faster than the
time resolution of imaging techniques. The caveat of non-
invasive EEGs is the fact that they reflect the average
activity of sources far from the recording sites, and therefore
do not have an optimal spatial resolution. Moreover, they
are largely contaminated by noise and artifacts.

Although the way of recording EEG and EP signals did
not change as much as multiunit recordings or imaging
techniques, there have been significant advances in the
methodology for analyzing the data. In fact, due to their
high complexity, low signal/noise ratio, nonlinearity, and
nonstationarity, they have been an ultimate challenge for
most methods of signal analysis. The development and
implementation of new algorithms that are specifically
designed for such complex signals allow us to get informa-
tion beyond the one accessible with previous approaches.
These methods open a new gateway to the study of high level
cognitive processes in humans with noninvasive techniques
and at no great expense. Here, we review some of the most

common paradigms to elicit evoked potentials and describe
basic and more advanced methods of analysis with special
emphasis on the information that can be gained from their
use. Although we focus on EEG recordings, these ideas also
apply to magnetoencephalograpic (MEG) recordings.

RECORDING

The electroencephalogram measures the average electrical
activity of the brain at different sites of the head. Typical
recordings are done at the scalp with high conductance
electrodes placed at specific locations according to the so-
called 10–20 system (1). The activity of each electrode can
be referenced to a common passive electrode (or to a pair of
linked electrodes placed at the earlobes)—monopolar
recordings—or can be recorded differentially between pairs
of contiguous electrodes—bipolar recordings—. In the lat-
ter case, there are several ways of choosing the electrode
pairs. Furthermore, there are specific montages of bipolar
recordings designed to visualize the propagation of activity
across different directions (1). Intracranial recordings are
common in animal studies and are very rare in humans.
Intracranial electrodes are mainly implanted in epileptic
patients refractory to medication in order to localize the
epileptic focus, and then evaluate the feasibility of a sur-
gical resection.

Figure 1 shows the 10–20 electrode distribution (a) and
a typical monopolar recording of a normal subject with eyes
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Figure 1. (a) Electrode montage of the 10–20 system and (b) an exemplary EEG recording with this
montage. All electrodes are referenced to a linked earlobes reference (A1 and A2). F¼ frontal,
C¼ central, P¼parietal, T¼ temporal, and O¼ occipital. Note the presence of blinking artifacts
(marked with an arrow) and of posterior alpha oscillations (marked with an oval).



open (b). Note the high amplitude deflections in the ante-
rior recordings due to blinking artifacts. In fact, one of the
main problems in EEG analysis is the very low signal/noise
ratio. Note also the presence of ongoing oscillations in the
posterior sites. These oscillations are � 10 Hz and are
known as the alpha rhythm. The EEG brain oscillations
of different frequencies and localizations have been corre-
lated with functions, stages and pathologies of the brain
(2–4).

In many scientific fields, especially in physics, one very
useful way to learn about a system is by studying its
reactions to perturbations. In brain research, it is also a
common strategy to see how single neurons or large neu-
ronal assemblies, as measured by the EEG, react to dif-
ferent types of stimuli. Evoked potentials are the changes
in the ongoing EEG activity due to stimulation. They are
time locked to the stimulus and they have a characteristic
pattern of response that is more or less reproducible under
similar experimental conditions. They are characterized by
their polarity and latency, for example, P100 meaning a
positive deflection (P for positive) occurring 100 ms after
stimulation. The recording of evoked potentials is done in
the same way as the EEGs. The stimulus delivery system
sends triggers to identify the stimuli onsets and offsets.

GENERATION OF EVOKED POTENTIALS

Evoked potentials are usually considered as the time-
locked and synchronized activity of a group of neurons
that add to the background EEG. A different approach
explains the evoked responses as a reorganization of the
ongoing EEG (3,5). According to this view, evoked poten-
tials can be generated by a selective and time-locked
enhancement of a particular frequency band or by a phase
resetting of ongoing frequencies. In particular, the study
of the EPs in the frequency domain attracted the attention
of several researchers (see section on Event-Related
Oscillations). A few of these works focus on correlations
between prestimulus EEG and the evoked responses (4).

SENSORY EVOKED POTENTIALS

There are mainly three modalities of stimulation: visual,
auditory, and somatosensory. Visual evoked potentials are
usually evoked by light flashes or visual patterns such as a
checkerboard or a patch. Figure 2 shows the grand average
visual evoked potentials of 10 subjects. Scalp electrodes
were placed according to the 10–20 system, with linked
earlobes reference. The stimuli were a color reversal of the
(black/white) checks in a checkerboard pattern (sidelength
of the checks: 50’). There is a positive deflection at � 100 ms
after stimulus presentation (P100) followed by a negative
rebound at 200 ms (N200). These peaks are best defined at
the occipital electrodes, which are the closest to the pri-
mary visual area. The P100 is also observed in the central
and frontal electrodes, but not as well defined and appear-
ing later than in the posterior sites. The P100–N200 com-
plex can be seen as part of an �10 Hz event-related
oscillation as it will be described in the following sections.
Visual EPs can be used clinically to identify lesions in the

visual pathway, such as the ones caused by optic neuritis
and multiple sclerosis (6–9).

Auditory evoked potentials are usually elicited by
tones or clicks. According to their latency they are further
subdivided into early, middle, and late latency EPs. Early
EPs comprise: (1) the electrococheleogram, which reflects
responses in the first 2.5 ms from the cochlea and the
auditory nerve, and (2) brain stem auditory evoked poten-
tials (BSAEP), which reflect responses from the brain
stem in the first 12 ms after stimulation and are recorded
from the vertex. The BSAEP are seen at the scalp due to
volume conduction. Early auditory EPs are mainly used
clinically to study the integrity of the auditory pathway
(10–12). They are also useful for detecting hearing impair-
ments in children and in subjects that cannot cooperate
in behavioral audiometry studies. Moreover, the presence
of early auditory EPs may be a sign of recovery from
coma.

Middle latency auditory EPs are a series of positive and
negative waves occurring between 12 and 50 ms after
stimulation. Clinical applications of these EPs are very
limited due to the fact that the location of their sources is
still controversial (10,11). Late auditory EPs occur between
50 and 250 ms after stimulation and consist of four main
peaks labeled P50, N100, P150, and N200 according to
their polarity and latency. They are of cortical origin and
have a maximum amplitude at vertex locations. Auditory
stimulation can also elicit potentials with latencies of> 200
ms. These are, however, responses to the context of the
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Figure 2. Grand average visual evoked potential. There is mainly
one positive response at 100 ms after stimulation (P100) followed
by a negative one at 200 ms (N200). These responses are best
localized in the posterior electrodes.



stimulus rather than to its physical characteristics and will
be further described in the next section.

Somatosensory EPs are obtained by applying short
lasting currents to sensory and motor peripheral nerves
and are mainly used to identify lesions in the somatosen-
sory pathway (13). In particular, they are used for the
diagnosis of diseases affecting the white matter like multi-
ple sclerosis, for noninvasive studies of spinal cord traumas
and for peripheral nerve disorders (13). They are also used
for monitoring the spinal cord during surgery, giving an
early warning of a potential neurological damage in
anesthetized patients (13).

Evoked potentials can be further classified as exogenous
and endogenous. Exogenous EPs are elicited by the phy-
sical characteristics of the external stimulus, such as
intensity, duration, frequency, and so on. In contrast,
endogenous EPs are elicited by internal brain processes
and respond to the significance of the stimulus. Endogen-
ous EPs can be used to study cognitive processes as dis-
cussed in the next section.

EVOKED POTENTIALS AND COGNITION

Usually, the term evoked potentials refers to EEG
responses to sensory stimulation. Sequences of stimuli
can be organized in paradigms and subjects can be asked
to perform different tasks. Event-related potentials (ERPs)
constitute a broader category of responses that are elicited
by ‘‘events’’, such as the recognition of a ‘‘target’’ stimulus
or the lack of a stimulus in a sequence.

Oddball Paradigm and P300

The most common method to elicit ERPs is by using the
oddball paradigm. Two different stimuli are distributed
pseudorandomly in a sequence; one of them appearing
frequently (standard stimulus), the other one being a
target stimulus appearing less often and unexpectedly.
Standard and target stimuli can be tones of different
frequencies, figures of different colors, shapes, and so on.
Subjects are usually asked to count the number of target
appearances in a session, or to press a button whenever a
target stimulus appears.

Figure 3 shows grand-average (10 subjects) visual
evoked potentials elicited with an oddball paradigm.
Figure 3 a shows the average responses to the frequent
(non target) stimuli and (b) shows one to the targets. The
experiment was the same as the one described in Fig. 2, but
in this case target stimuli were pseudorandomly distrib-
uted within the frequent ones. Frequent stimuli (75%) were
color reversals of the checks, as in the previous experiment,
and target stimuli (25%) were also color reversals but with
a small displacement of the checkerboard pattern (see Ref.
(14) for details). Subjects had to pay attention to the
appearance of the target stimuli.

The responses to the nontarget stimuli are qualitatively
similar to the responses to visual EPs (without a task)
shown in Fig. 2. As in the case of pattern visual EPs, the
P100–N200 complex can be observed upon nontarget and
target stimulation. These peaks are mainly related with
primary sensory processing due to the fact that they do not
depend on the task, they have a relatively short latency
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Figure 3. Grand-average pattern visual evoked potentials with an oddball paradigm. (a) Average
responses for the nontarget stimuli and (b) average responses for the target stimuli. Note the
appearance of a positive deflection at� 400 ms after stimulation (P300) only upon the target stimuli.



(100 ms) and they are best defined in the primary visual
area (occipital lobe). Note, however, that these components
can also modulate their amplitude in tasks with different
attention loads (15,16). Target stimulation led to a marked
positive component, the P300, occurring between 400 and
500 ms. The P300 is larger in the central and posterior
locations.

While the localization of the P300 in the scalp is well
known, the localization of the sources of the P300 in the
brain are still controversial (for a review see Ref. (17). Since
the P300 is task dependent and since it has a relatively long
latency, it is traditionally related to cognitive processes
such as signal matching, recognition, decision making,
attention and memory updating (6,18,19). There have been
many works using the P300 to study cognitive processes
[for reviews see Refs. (18–20)]. In various pathologies
cognition is impaired and this is reflected in abnormal
P300 responses, as shown in depression, schizophrenia,
dementia and others [for reviews see (18,21)].

The P300 can be also elicited by a passive oddball
paradigm (i.e., an oddball sequence without any task). In
this case, a P300 like response appears upon target stimu-
lation, reflecting the novelty of the stimulus rather than
the execution of a certain task. This response has been
named P3a. It is earlier than the classic P300 (also named
P3b), it is largest in frontal and central areas and it
habituates quickly (22,23).

Mismatch Negativity

Mismatch negativity (MMN) is a negative potential eli-
cited by auditory stimulation. It appears along with any
change in some repetitive pattern and peaks between 100
and 200 ms after stimulation (24). It is generally elicited
by the passive (i.e., no task) auditory oddball paradigm
and it is visualized by subtracting the frequent stimuli
from the deviant one. The MMN is generated in the
auditory cortex. It is known to reflect auditory memory
(i.e., the memory trace of preceding stimuli) and can be
elicited even in the absence of attention (25). It provides
an index of sound discrimination and has therefore being
used to study dyslexia (25). Since MMN reflects a pre-
attentive state, it can be also elicited during sleep (26).
Moreover, it has been proposed as an index for coma
prognosis (27,28).

Omitted Evoked Potentials

Omitted evoked potentials (OEPs) are similar in nature to
the P300 and MMN, but they are evoked by the omission of
a stimulus in a sequence (29–31). The nice feature of these
potentials is that they are elicited without external stimu-
lation, thus being purely endogenous components. Omitted
evoked potentials mainly reflect expectancy (32) and are
modulated by attention (31,33). The main problem in
recording OEPs is the lack of a stimulus trigger. This
results in large latency variations from trial to trial, and
therefore OEPs may not be visible after ensemble aver-
aging. Note that trained musicians were shown to have less
variability in the latency of the OEP responses (latency
jitter) in comparison to non-musicians due to their better
time-accuracy (34).

Contingent Negative Variation

Contingent negative variation (CNV) is a slowly rising
negative shift appearing before stimulus onset during
periods of expectancy and response preparation (35). It
is usually elicited by tasks resembling conditioned learning
experiments. A first stimulus gives a preparatory signal for
a motor response to be carried out at the time of a second
stimulus. The CNV reflects the contingency or association
between the two stimuli. It has been useful for the study of
aging and different psychopathologies, such as depression
and schizophrenia (for reviews see Refs. (36,37)). Similar in
nature to the CNVs are the ‘‘Bereitschaft’’ or ‘‘Readiness’’
potentials (38), which are negative potential shifts pre-
ceeding voluntary movements [for a review see Ref. (36)].

N400

Of particular interest are ERPs showing signs of language
processing. Kutas and Hillyard (39,40) described a nega-
tive deflection between 300 and 500 ms after stimulation
(N400), correlated with the appearance of semantically
anomalous words in otherwise meaningful sentences. It
reflects ‘‘semantic memory’’; that is, the predictability of a
word based on the semantic content of the preceding
sentence (16).

Error Related Negativity

The error related negativity (ERN) is a negative component
that appears after negative feedback (41,42). It can be
elicited with a wide variety of reaction time tasks and it
peaks within 100 ms of an error response. It reaches its
maximum over frontal and central areas and convergent
evidence from source localization analyses and imaging
studies point toward a generation in the anterior cingu-
lated cortex (41).

BASIC ANALYSIS

Figure 4a shows 16 single-trial visual ERPs from the left
occipital electrode of a typical subject. These are
responses to target stimuli using the oddball paradigm
described in the previous section. Note that it is very
difficult to distinguish the single-trial ERPs due to their
low amplitude and due to their similarity to spontaneous
fluctuations in the EEG. The usual way to improve the
visualization of the ERPs is by averaging the responses of
several trials. Since evoked potentials are locked to the
stimulus onset, their contribution will add, whereas one of
the ongoing EEG will cancel. Figure 4b shows the average
evoked potential. Here it is possible to identify the P100,
N200, and P300 responses described in the previous
section.

The main quantification of the average ERPs is by
means of their amplitudes and latencies. Most research
using ERPs compare statistically the distribution of peak
amplitudes and latencies of a certain group (e.g., subjects
in some particular state or doing some task) with a
matched control group. Such comparisons also can be used
clinically and, in general, pathological cases show peaks
with long latencies and small amplitudes (2,6).
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Another important aspect of ERPs is their topography.
In fact, the abnormal localization of evoked responses can
have clinical relevance. The usual way to visualize the
topography of the EPs is via contour plots (43–47). These
are obtained from the interpolation of the EP amplitudes at
fixed times. There are several issues to consider when
analyzing topographic plots: (1) the way the 3D head is
projected into two dimensions, (2) the choice of the refer-
ence, (3) the type of interpolation used, and (4) the number
of electrodes and their separation (46). These choices can
indeed bias the topographic maps obtained.

SOURCE LOCALIZATION

In the previous section, we briefly discussed the use of
topographic representations of the EEG and EPs. Besides
the merit of the topographic representation given by these
maps, the final goal is to get a hint on the sources of the
activity seen at the scalp. In other words, given a certain

distribution of voltages at the scalp one would like to
estimate the location and magnitude of their sources of
generation. This is known as the inverse problem and it has
no unique solution. The generating sources are usually
assumed to be dipoles, each one having six parameters to
be estimated, three for its position and three for its mag-
nitude. Clearly, the complexity of the calculation increases
rapidly with the number of dipoles and, in practice, no more
than two or three dipoles are considered. Dipole sources are
usually estimated using spherical head models. These
models consider the fact that the electromagnetic signal
has to cross layers of different impedances, such as the
dura mater and the scull. A drawback of spherical head
models is the fact that different subjects have different
head shapes. This led to the introduction of realistic head
models, which are obtained by modeling the head shape
using MRI scans and computer simulations. Besides all
these issues, there are already some impressive results in
the literature [see Refs. (49,86)] and references cited
therein describing the use and applications of the LORETA
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Figure 4. (a) Sixteen single-trial
responses of a typical subject and
(b) the average response. The triangle
marks the time of stimulation. Note
that the evoked responses are clearly
seen after averaging, but are hardly
identified in the single trials.



software; Ref. (50) and an extensive list of publications
using the BESA software at http://www.besa.de). Since a
reasonable estimation of the EEG and EP sources critically
depends on the number of electrodes, dipole location has
been quite popular for the analysis of magnetoencephalo-
grams, which have more recording sites.

EVENT-RELATED OSCILLATIONS

Evoked responses appear as single peaks or as oscillations
generated by the synchronous activation of a large net-
work. The presence of oscillatory activity induced by dif-
ferent type of stimuli has been largely reported in animal
studies. Bullock (51) gives an excellent review of the sub-
ject going from earlier studies by Adrian (52) to more recent
results in the 1990s (some of the later studies are included
in Ref. (53). Examples are event-related oscillations of 15–
25 Hz in the retina of fishes in response to flashes (54),
gamma oscillations in the olfactory bulb of cats and rabbits
after odor presentation (55,56) and beta oscillations in the
olfactory system of insects (57,58). Moreover, it has been
proposed that these brain oscillations play a role in infor-
mation processing (55). This idea became very popular
after the report of gamma activity correlated to the binding
of perceptual information in anesthetized cats (59).

Event-related oscillations in animals are quite robust
and in many cases visible by the naked eye. In humans, this
activity is more noisy and localized in time. Consequently,
more sophisticated time–frequency representations, like
the one given by the wavelet transform, are needed in order
to precisely localize event-related oscillations both in time
and frequency. We finish this section with a cautionary
note about event-related oscillations, particularly impor-
tant for human studies. Since oscillations are usually not
clear in the raw data, digital filters are used in order to
visualize them. However, one should be aware that digital
filters can introduce ‘‘ringing effects’’ and single peaks in
the original signal can look like oscillations after filtering.
In Fig. 5, we exemplify this effect by showing a delta
function (a) filtered with a broad and a narrow band elliptic
filter (b,c, respectively). Note that the original delta func-
tion can be mistaken for an oscillation after filtering,
especially with the narrow band filter [see also Ref. (51)].

WAVELET TRANSFORM AND EVENT-RELATED
OSCILLATIONS

Signals are usually represented either in the time or in the
frequency domain. The best time representation is given by
the signal itself and the best frequency representation is
given by its Fourier transform (FT). With the FT it is
possible to estimate the power spectrum of the signal,
which quantifies the amount of activity for each frequency.
The power spectrum has been the most successful method
for the analysis of EEGs (2), but it lacks time resolution.
Since event-related oscillations appear in a short time
range, a simultaneous representation in time and fre-
quency is more appropriate.

The Wavelet transform (WT) gives a time–frequency
representation that has two main advantages: (1) optimal

resolution in the time and frequency domains; (2) no
requirement of stationarity. It is defined as the correlation
between the signal x(t) and the wavelet functions ca;bðtÞ

Wc Xða; bÞ ¼ hxðtÞjca;bðtÞi ð1Þ

where ca;bðtÞ are dilated (contracted) and shifted versions
of a unique wavelet function c(t)

ca;b ¼ jaj�1=2c
t � b

a

� �
ð2Þ

(a, b are the scale and translation parameters, respec-
tively). The WT gives a decomposition of x(t) in different
scales, tending to be maximum at those scales and time
locations where the wavelet best resembles x(t). Moreover,
Eq. 1 can be inverted, thus giving the reconstruction of x(t).

The WT maps a signal of one independent variable t onto
a function of two independent variables a, b. This proce-
dure is redundant and not efficient for algorithm imple-
mentations. In consequence, it is more practical to define
the WT only at discrete scales a and discrete times b by
choosing the set of parameters fa j ¼ 2� j; b j; k ¼ 2� jkg,
with integers j, k.

Contracted versions of the wavelet function match the
high frequency components of the original signal and the
dilated versions match low frequency oscillations. Then, by
correlating the original signal with wavelet functions of
different sizes we can obtain the details of the signal at
different scales. The correlations with the different wavelet
functions can be arranged in a hierarchical scheme called
multiresolution decomposition (60). The multiresolution
decomposition separates the signal into ‘‘details’’ at differ-
ent scales and the remaining part is a coarser representa-
tion named ‘‘approximation’’.

Figure 6 shows the multiresolution decomposition of the
average ERP shown in Fig. 4. The left part of the figure
shows the wavelet coefficients and the right part shows
the corresponding reconstructed waveforms. After a five
octave wavelet decomposition using B-Spline wavelets (see
Refs. 14,61 for details) the coefficients in the following
bands were obtained (in brackets the EEG frequency bands
that approximately correspond to these values): D1: 63–
125 Hz, D2: 31–62 Hz (gamma), D3: 16–30 Hz (beta), D4:
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Figure 5. A delta function (a) after broad (b) and narrow (c) band
pass filtering. Note that single peaks can look like oscillations due
to filtering.



8–15 Hz (alpha), D5: 4–7 Hz (theta), and A5: 0.5–4 Hz
(delta). Note that the addition of the reconstructed wave-
forms of all frequency bands returns the original signal. In
the first 0.5 s after stimulation there is an increase in the
alpha and theta bands (D4, D5) correlated with P100–N200
complex and later there is an increase in the delta band
(A5) correlated with the P300. As an example of the use of
wavelets for the analysis of event related oscillations, in
the following we focus on the responses in the alpha band.

The grand average (across subjects) ERP is shown on
left side of Fig. 7. Upper plots correspond to the responses
to NT stimuli and lower plots to T stimuli. Only left
electrodes and Cz are shown, the responses of the right
electrodes being qualitatively similar. For both stimulus
types we observe the P100–N200 complex and the P300
appears only upon target stimulation. Center and right
plots of Fig. 7 show the alpha band wavelet coefficients and
the filtered ERPs reconstructed from these coefficients,
respectively. Amplitude increases are distributed over
the entire scalp for the two stimulus types, best defined
in the occipital electrodes. They appear first in the occipital
electrodes, with an increasing delay in the parietal, cen-

tral, and frontal locations. The fact that alpha responses
are not modulated by the task and the fact that their
maximal and earliest appearance is in occipital locations
(the primary visual sensory area) point toward a distrib-
uted generation and a correlation with sensory processing
(14,61). Note that these responses are localized in time,
thus stressing the use of wavelets.

In recent years, there have been an increasing number
of works applying the WT to the study of event-related
oscillations. Several of these studies dealt with gamma
oscillations, encouraged by the first results by Gray and
coworkers (59). In particular, induced gamma activity has
been correlated to face perception (62), coherent visual
perception (63), visual search tasks (64) cross-modal inte-
gration (64,65), and so on.

Another interesting approach to study event-related
oscillations is the one given by the concepts of event-related
synchronization (ERS) and event-related desynchronization
(ERD), which characterize increases and decreases of the
power in a given frequency band (66,67). Briefly, the band
limited power is calculated for each single trial and then
averaged across trials. Since ERS and ERD are defined as an
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Figure 6. Multiresolution decom-
position (a) and reconstruction
(b) of an average evoked potential.
D1–D5 and A5 are the different
scales in which the signal is decom-
posed.



average of the power of the signal, they are sensitive to
phase locked as well as nonphase locked oscillations. Inter-
estingly, similar concepts and a simple measure of phase
locking can be also defined using wavelets (68).

SINGLE–TRIAL ANALYSIS

As shown in Fig. 4, averaging several trials increases the
signal/noise ratio of the EPs. However, it relies on the basic
assumption that EPs are an invariant pattern perfectly
locked to the stimulus that lays on an independent station-
ary and stochastic background EEG signal. This assumption
is in a strict sense not valid. In fact, averaging implies a loss
of information related to systematic or unsystematic varia-
tions between the single trials. Furthermore, these varia-
tions (e.g., latency jitters) can affect the validity of the
average EP as a representation of the single trial responses.

Several techniques have been proposed to improve the
visualization of the single-trial EPs. Some of these
approaches involve the filtering of single-trial traces by
using techniques that are based on the Wiener formalism.
This provides an optimal filtering in the mean-square error
sense (69,70). However, these approaches assume that the
signal is a stationary process and, since the EPs are
compositions of transient responses with different time
and frequency localizations, they are not likely to give
optimal results. A obvious advantage is to implement
time-varying strategies. In the following, we describe a
recently proposed denoising implementation based on the
WT to obtain the EPs at the single trial level (71,72). Other
works also reported the use of wavelets for filtering average
EPs or for visualizing the EPs in the single trials (73–77)
see a brief discussion of these methods in Ref. 72.

In Fig. 6, we already showed the wavelet decomposition
and reconstruction of an average visual EP. Note that the

P100–N200 response is mainly correlated with the first
poststimulus coefficient in the details D4–D5. The P300 is
mainly correlated with the coefficients at �400–500 ms in
A5. This correspondence is easily identified because: (1) the
coefficients appear in the same time (and frequency) range
as the EPs and (2) they are relatively larger than the rest
due to phase-locking between trials (coefficients related
with background oscillations are diminished in the aver-
age). A straightforward way to avoid the fluctuations
related with the ongoing EEG is by equaling to zero those
coefficients that are not correlated with the EPs. However,
the choice of these coefficients should not be solely based on
the average EP and it should also consider the time ranges
in which the single-trial EPs are expected to occur (i.e.,
some neighbor coefficients should be included in order to
allow for latency jitters).

Figure 8a shows the coefficients kept for the reconstruc-
tion of the P100–N200 and P300 responses. Figure 8b
shows the contributions of each level obtained by eliminat-
ing all the other coefficients. Note that in the final recon-
struction of the average response (uppermost right plot)
background EEG oscillations are filtered. We should
remark that this is usually difficult to be achieved with
a Fourier filtering approach due to the different time and
frequency localizations of the P100–N200 and P300
responses, and also due to the overlapping frequency
components of these peaks and the ongoing EEG. In this
context, the main advantage of Wavelet denoising over
conventional filtering is that one can select different time
windows for the different scales. Once the coefficients of
interest are identified from the average ERP, we can apply
the same procedure to each single trial, thus filtering the
contribution of background EEG activity.

Figure 9 shows the first 15 single trials and the average
ERP for the recording shown in the previous figure. The
raw single trials have been already shown in Fig. 4. Note
that with denoising (red curves) we can distinguish the
P100–N200 and the P300 in most of the trials. Note also
that these responses are not easily identified in the original
signal (gray traces) due to their similarity with the ongoing
EEG. We can also observe some variability between trials.
For an easier visualization Fig. 10 shows a contour plot of
the single trial ERPs after denoising. This figure is the
output of a software package for denoising EPs (EP_den)
available at www.vis.caltech.edu/�rodri. In the denoised
plot, we observe a gray pattern followed by a black one
between 100 and 200 ms, corresponding to the P100–N200
peaks. The more unstable and wider gray pattern at � 400–
600 ms corresponds to the P300. In particular, it has been
shown that wavelet denoising improves the visualization of
the single trial EPs (and the estimation of their amplitudes
and latencies) in comparison with the original data and in
comparison with previous approaches, such as Wiener
filtering (72).

APPLICATIONS OF SINGLE-TRIAL ANALYSIS

The single-trial analysis of EPs has a wide variety of
applications. By using correlations between the average
EP and the single-trial responses, it is possible to calculate
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Figure 7. Grand average visual EPs to nontarget (NT) and target
(T) stimuli in an oddball paradigm (a). Both bþ and c plots shows
the wavelet coefficients in the alpha band and the corresponding
reconstruction of the signal from them, respectively.



selective averages including only trials with good
responses (71,72). Moreover, it is possible to eliminate
effects of latency jitters by aligning trials according to
the latency of the single-trial peaks (71,72). The use of
selective averages as well as jitter corrected averages had
been proposed long ago (78,79). Wavelet denoising
improves the identification of the single-trials responses,
thus facilitating the construction of these averages.

Some of the most interesting features to study in single-
trial EPs are the changes in amplitude and latency of
the peaks from trial to trial. It is possible to calculate
amplitude and latency jitters: information that is not avail-

able in the average EPs. For example, trained musicians
showed smaller latency jitters of omitted evoked potentials
in comparison with nonmusicians (34). Variations in ampli-
tude and latency can be also systematic. Exponential
decreases in different EP components have been related
to habituation processes both in humans and in rats
(80–82). Furthermore, the appearance of a P3-like compo-
nent in the rat entorhinal cortex has been correlated to the
learning of a go/no-go task (83). In humans, it has recently
been shown that precise timing of the single-trial evoked
responses accounts for a sleep-dependent automatization
of perceptual learning (84).

242 EVOKED POTENTIALS

Figure 8. Principle of wavelet denoising. The reconstruction of the signal is done using only those
coefficients correlated with the EPs. See text for details.
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Figure 9. Average EP and the single-trial responses corresponding to the data shown in the pr-
evious figure, with (black) and without (gray) denoising. Note that after denoising it is possible to
identify the single-trial responses.



CONCLUDING COMMENT

In addition to clinical applications, EPs are very useful
to study high level cognitive processes. Their main advan-
tages over other techniques are their low cost, their non-
invasiveness and their good temporal resolution. Of
particular interest is the study of trial-to-trial variations
during recording sessions. Supported by the use of new and
powerful methods of signal analysis, the study of single
trial EPs and their correlation to different behavioral
processes seems one of the most interesting directions of
future research. In conclusion, the good and old EEG and
its cousin, the EP, have a lot to offer, especially when new
and powerful methods of analysis are applied.
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3. Başar E. EEG-Brain dynamics. Relation between EEG and
brain evoked potentials. Amsterdam: Elsevier; 1980.
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