
Introduction To Ensemble Learning 

Ensemble Learning Techniques in Machine Learning, Machine learning models suffer 

bias and/or variance. Bias is the difference between the predicted value and actual 

value by the model. Bias is introduced when the model doesn’t consider the variation 

of data and creates a simple model. The simple model doesn’t follow the patterns of 

data, and hence the model gives errors in predicting training as well as testing data i.e. 

the model with high bias and high variance. You Can also read Covariance and 

Correlation In Machine Learning 

When the model follows even random quirks of data, as pattern of data, then the 

model might do very well on training dataset i.e. it gives low bias, but it fails on test 

data and gives high variance. 

Therefore, to improve the accuracy (estimate) of the model, ensemble learning 

methods are developed. Ensemble is a machine learning concept, in which several 

models are trained using machine learning algorithms. It combines low performing 

classifiers (also called as weak learners or base learner) and combine individual model 

prediction for the final prediction. 

On the basis of type of base learners, ensemble methods can be categorized as 

homogeneous and heterogeneous ensemble methods. If base learners are same, then it 

is a homogeneous ensemble method. If base learners are different then it is a 

heterogeneous ensemble method. 

 

 

https://www.fireblazeaischool.in/blogs/covariance-and-correlation-in-machine-learning/
https://www.fireblazeaischool.in/blogs/covariance-and-correlation-in-machine-learning/


Ensemble Learning Methods 

Ensemble techniques are classified into three types: 

1. Bagging 

2. Boosting 

3. Stacking 

Bagging 

Consider a scenario where you are looking at the users’ ratings for a product. Instead 

of approving one user’s good/bad rating, we consider average rating given to the 

product. With average rating, we can be considerably sure of quality of the product. 

Bagging makes use of this principle. Instead of depending on one model, it runs the 

data through multiple models in parallel, and average them out as model’s final output. 

What is Bagging? How it works? 

 Bagging is an acronym for Bootstrapped Aggregation. Bootstrapping 

means random selection of records with replacement from the training 

dataset. ‘Random selection with replacement’ can be explained as follows: 

 

1. Consider that there are 8 samples in the training dataset. Out of these 8 

samples, every weak learner gets 5 samples as training data for the model. 

These 5 samples need not be unique, or non-repetitive. 



2. The model (weak learner) is allowed to get a sample multiple times. For 

example, as shown in the figure, Rec5 is selected 2 times by the model. 

Therefore, weak learner1 gets Rec2, Rec5, Rec8, Rec5, Rec4 as training data. 

3. All the samples are available for selection to next weak learners. Thus all 8 

samples will be available for next weak learner and any sample can be 

selected multiple times by next weak learners. 

 Bagging is a parallel method, which means several weak learners learn the 

data pattern independently and simultaneously. This can be best shown in the 

below diagram: 

 

 The output of each weak learner is averaged to generate final output of the 

model. 

 Since the weak learner’s outputs are averaged, this mechanism helps to 

reduce variance or variability in the predictions. However, it does not help to 

reduce bias of the model. 

 Since final prediction is an average of output of each weak learner, it means 

that each weak learner has equal say or weight in the final output. 

To summarize: 

1. Bagging is Bootstrapped Aggregation 

2. It is Parallel method 

3. Final output is calculated by averaging the outputs produced by individual 

weak learner 

4. Each weak learner has equal say 

5. Bagging reduces variance 



Boosting 

We saw that in bagging every model is given equal preference, but if one model 

predicts data more correctly than the other, then higher weightage should be given to 

this model over the other. Also, the model should attempt to reduce bias. These 

concepts are applied in the second ensemble method that we are going to learn, that is 

Boosting. 

What is Boosting? 

1. To start with, boosting assigns equal weights to all data points as all points 

are equally important in the beginning. For example, if a training dataset has 

N samples, it assigns weight = 1/N to each sample. 

2. The weak learner classifies the data. The weak classifier classifies some 

samples correctly, while making mistake in classifying others. 

3. After classification, sample weights are changed. Weight of correctly 

classified sample is reduced, and weight of incorrectly classified sample is 

increased. Then the next weak classifier is run.   

4. This process continues until model as a whole gives strong predictions. 

Note: Adaboost is the ensemble learning method used in binary classification only. 

How Adaboost Algorithm Works? 

Consider below training data for heart disease classification. 

 
1. Initialize Weights To All Training Points 



First step is to assign equal weights to all samples as all samples are equally important. 

Always, sum of weights of all samples equals 1. There are 8 samples, so each sample 

will get weight = 1/8 = 0.125 

Since all samples are equally important to start with, all samples get equal weight: 1 / 

total number of samples = 1/8 

 
2. Create Stump 

After assigning weight, next step is to create stumps. Stump is a decision tree with one 

node and two leaves. Adaboost creates forest of decision stumps. To create stump, 

only one attribute should be chosen. But, it is not randomly selected. The attribute that 

does the best job of classifying the sample is selected first. 

So let’s see how each attribute classifies the samples. 

Blocked Artery: 

 
Chest Pain: 



 
Weight: 

Weight is continuous quantity, and there is a method to find threshold for continuous 

quantity in decision tree algorithm. According to that method, the threshold is 175. 

Based on this condition draw the decision stump. 

 
From above classification, it can be seen that 

 ‘Blocked Arteries’ as a stump made 4 errors. 

 ‘Chest Pain’ as a stump made 3 errors. 

 ‘Weight’ as a stump made 1 error. 

Since, the attribute ‘Weight’ made least number of errors, ‘Weight’ is the best stump 

to start with. 

Note: Since this was attribute selection for first stump, we need not consider weight of 

each sample. This is because, to start with, all samples have equal weights. 

To select next stump, both, weight of samples and errors made by that attribute while 

classifying the samples, will be considered. 

3. Calculate Total Error And Voting Power (Amount Of Say) Of The Stump 



After choosing best attribute for stump, next step is to calculate the voting power 

(amount of say) of that stump in the final classification. Formula to calculate amount 

of say is: 

 
Where ln is Natural Log 

Total Error = Number of misclassified samples * Weight of sample. 

Since the stump misclassified only 1 sample, Total Error made by stump = weight of 1 

sample = 1/8 = 0.125 

Substituting Total Error in the equation, 

Amount of say = ½ * ln((1-0.125)/0.125) 

= 0.9729 

4. Start To Build Final Classifier Function 

The Adaboost classifier then starts building a function that will assign this ‘amount of 

say’ as voting power of the stump. It will assign 0.9729 as voting power to the stump 

created for ‘Weight’ attribute. 

The function h(x) = 0.9729* ‘Weight’ as stump 

5. Update New Weights For The Classifier 

After calculation of amount of say, next step is to create another stump. However, 

before that adjust the weights assigned to each sample. The samples that were 

correctly classified in previous stump should get less importance as their classification 

is over, and the samples that were not correctly classified should get more weight in 

the next step. 

The formula to assign new weight for correctly classified samples is: 

 



The formula to assign new weight for incorrectly classified samples is: 

 
New weights of correctly classified samples = 

Wnew = (0.128) / 2(1-0.125) = 0.07 

New weights of incorrectly classified samples = 

Wnew = (0.125) / (2*0.125) = 0.5 

Substitute new weights: 

 
From above classification, it can be seen that 

 ‘Blocked Arteries’ as a stump made 4 errors. Therefore, Total Error for 

‘Blocked Arteries’ = 0.07*4 = 0.28 

 ‘Chest Pain’ as a stump made 3 errors. Therefore, Total Error for ‘Chest Pain’ 

= 0.07*3 = 0.21 

 ‘Weight’ as a stump made 1 error. Therefore, Total error for weight = 1*0.5 

= 0.5. 

Note: We have already considered ‘Weight’ attribute for first stump creation. So this 

attribute need not be considered again. However, it is considered here to show effect 

of ‘Assigned Weight’ of the sample on Total Error calculation. 

6. Calculate Voting Power (Amount of Say) and Add to Final Classifier Function 



Since Chest Pain classifier has least Total Error, this attribute is selected as second 

stump. 

The Amount of Say = ½ ln(1-0.21)/0.21 =0.66 

Add this classifier with its weight to the function. 

The function h(x) = 0.9729* ‘Weight’ as stump + 0.66*’Chest Pain’ as stump 

7. Assign New Weights and Repeat 

Again, assign new weights to the correctly classified samples with formula: 

Wnew = Wold / 2(1-total weight) 

And incorrectly classified samples with the formula: 

Wnew = Wold / (2*total weight) 

We repeat this process until 

1. Enough rounds of this process are done to create strong classifier 

2. No good classifiers left for making predictions. 

When it comes to classifying data point, even if one classifier misclassifies a point, the 

voting powers of other classifiers override it making strong predictions. 

There is another method to train Adaboost algorithm. In this method, new sample 

dataset is created in every iteration. The sample dataset is of same size as original 

dataset, and it contains some samples that are repeatedly selected. Samples with higher 

weights (i.e. samples that are incorrectly classified in previous round), will be selected 

repeatedly. The weight vector is normalized. 

To summarize: 

1. Adaboost is a sequential method where one weak learner runs after other. 

2. Weak learners are stumps i.e. decision tree with 2 nodes. 

3. Voting power is assigned to stumps based on how correctly it classifies the 

data. 



4. Boosting reduces bias 

Other Boosting Algorithms 

Apart from Adaboost, there is other boosting algorithm – Gradient Boosting 

or Gradient Boosting Machine (GBM). The main idea behind this algorithm is to 

create decision trees with smaller leaves and scale the tree with a learning rate. 

Decision tree algorithm is prone to overfitting and leads to high variance. Hence 

prediction made by the tree is scaled (or multipled) with the learning rate. This reduces 

training accuracy, but provides better results in long run. Gradient Boosting is used in 

classification as well as regression problems. 

The open source implementations Gradient Boosting algorithms are XGBoost, 

LightGBM that are more regularized, and efficient. 

Conclusion Ensemble Learning 

In this article, we learned that Ensemble Learning Techniques in Machine Learning is 

used to improve the performance of the model. In this method, several models are 

combined and the prediction of each model is considered in the overall prediction. 

Bagging and Boosting are ensemble methods. Bagging is Bootstrapped Aggregation 

and it is a parallel method. That means multiple models run in parallel and final output 

is calculated by averaging the outputs produced by individual model. In Bagging, each 

weak learner has equal say in final output prediction. Bagging reduces the variance. 

Boosting is a sequential method where mistakes made by first weak learner are 

considered while making predictions by second weak learner. Weights are assigned 

and adjusted in each iteration. Boosting reduces bias. Adaboost, GBM, LightGBM are 

some of the boosting techniques used to improve overall prediction of the model. 

 

https://towardsdatascience.com/understanding-gradient-boosting-machines-9be756fe76ab
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