Four variable k-maps:

Four variable k-map expressions can have $2^{4}=16$ possible combinations of input variables such as -ABCD with minterm designations $\mathrm{m}_{0}, \mathrm{~m}_{1}$ \qquad m_{15} respectively in SOP form \& $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}, \mathrm{A}+\mathrm{B}+\mathrm{C}+\quad,--------\quad+\quad+\quad+\quad$ with maxterms $\mathrm{M}_{0}, \mathrm{M}_{1},--------$
$-\mathrm{M}_{15}$ respectively in POS form. It has $2^{4}=16$ squares or cells. The binary number designations of rows \& columns are in the gray code. Here follows $01 \& 10$ follows 11 called Adjacency ordering.

SOP form

POS form

EX: Reduce using mapping the expression $\Sigma \mathrm{m}(2,3,6,7,8,10,11,13,14)$.
Start with the minterm with the least number of adjacencies. The minterm m_{13} has no adjacency. Keep it as it is. The m_{8} has only one adjacency, m_{10}. Expand m_{8} into a 2 -square with m_{10}. The m_{7} has two adjacencies, m_{6} and m_{3}. Hence m_{7} can be expanded into a 4-square with m_{6}, m_{3} and m_{2}. Observe that, m_{7}, m_{6}, m_{2}, and m_{3} form a geometric square. The m_{11} has 2 adjacencies, m_{10} and m_{3}. Observe that, m_{11}, m_{10}, m_{3}, and m_{2} form a geometric square on wrapping the K -map. So expand m_{11} into a 4 -square with $\mathrm{m}_{10}, \mathrm{~m}_{3}$ and m_{2}. Note that, m_{2} and m_{3}, have already become a part of the 4 -square m_{7}, m_{6}, m_{2}, and m_{3}. But if m_{11} is expanded only into a 2 -square with m_{10}, only one variable is eliminated. So m_{2} and m_{3} are used again to make another 4 -square with m_{11} and m_{10} to eliminate two variables. Now only m_{6} and m_{14} are left uncovered. They can form a 2 -square that eliminates only one variable. Don't do that. See whether they can be expanded into a larger square. Observe that, m_{2}, m_{6}, m_{14}, and m_{10} form a rectangle. So m_{6} and m_{14} can be expanded into a 4 -square with m_{2} and m_{10}. This eliminates two variables.

Five variable k-map:

Five variable k-map can have $2^{5}=32$ possible combinations of input variable as
 $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}, \mathrm{A}+\mathrm{B}+\mathrm{C}+\quad,-------\quad+\quad+\quad+\quad+\quad$ with maxterms $\mathrm{M}_{0}, \mathrm{M}_{1},---------$ M_{31} respectively in POS form. It has $2^{5}=32$ squares or cells of the k-map are divided into 2 blocks of
16 squares each. The left block represents minterms from m_{0} to m_{15} in which A is a 0 , and the right block represents minterms from m_{16} to m_{31} in which A is 1 .The 5 -variable k -map may contain 2 -squares, 4 -squares, 8 -squares, 16 -squares or 32 -squares involving these two blocks. Squares are also considered adjacent in these two blocks, if when superimposing one block on top of another, the squares coincide with one another.

Some possible 2-squares in a five-variable map are $\mathrm{m}_{0}, \mathrm{~m}_{16} ; \mathrm{m}_{2}, \mathrm{~m}_{18} ; \mathrm{m}_{5}, \mathrm{~m}_{21}$; $\mathrm{m}_{15}, \mathrm{~m}_{31} ; \mathrm{m}_{11}, \mathrm{~m}_{27}$.

Some possible 4-squares are $m_{0}, m_{2}, m_{16}, m_{18} ; m_{0}, m_{1}, m_{16}, m_{17} ; \quad m_{0}, m_{4}, m_{16}, m_{20}$; $m_{13}, m_{15}, m_{29}, m_{31} ; m_{5}, m_{13}, m_{21}, m_{29}$.

Some possible 8-squares are $\mathrm{m}_{0}, \mathrm{~m}_{1}, \mathrm{~m}_{3}, \mathrm{~m}_{2}, \mathrm{~m}_{16}, \mathrm{~m}_{17}, \mathrm{~m}_{19}, \mathrm{~m}_{18} ; \mathrm{m}_{0}, \mathrm{~m}_{4}, \mathrm{~m}_{12}, \mathrm{~m}_{8}$, $m_{16}, m_{20}, m_{28}, m_{24} ; m_{5}, m_{7}, m_{13}, m_{15}, m_{21}, m_{23}, m_{29}, m_{31}$.

The squares are read by dropping out the variables which change. Some possible
Grouping s is
(a) $\mathrm{m}_{0}, \mathrm{~m}_{16}=\overline{\mathrm{B}} \overline{\mathrm{C}} \overline{\mathrm{D}} \overline{\mathrm{E}}$
(b) $\mathrm{m}_{2}, \mathrm{~m}_{18}=\overline{\mathrm{B}} \overline{\mathrm{C}} \overline{\mathrm{E}}$
(c) $\mathrm{m}_{4}, \mathrm{~m}_{6}, \mathrm{~m}_{20}, \mathrm{~m}_{22}=\bar{B} C \bar{E}$
(d) $\mathrm{m}_{5}, \mathrm{~m}_{7}, \mathrm{~m}_{13}, \mathrm{~m}_{15}, \mathrm{~m}_{21}, \mathrm{~m}_{23}$,
$\mathrm{m}_{29}, \mathrm{~m}_{31}=\mathrm{CE}$
(e) $\mathrm{m}_{8}, \mathrm{~m}_{9}, \mathrm{~m}_{10}, \mathrm{~m}_{11}, \mathrm{~m}_{24}, \mathrm{~m}_{25}$,
$\mathrm{m}_{26}, \mathrm{~m}_{27}=\mathrm{B} \overline{\mathrm{C}}$

$$
\begin{aligned}
& \mathbf{M}_{0}, \mathbf{M}_{16}=\mathbf{B}+\mathbf{C}+\mathbf{D}+\mathbf{E} \\
& \mathbf{M}_{2}, \mathbf{M}_{18}=\mathbf{B}+\mathbf{C}+\overline{\mathbf{D}}+\mathbf{E} \\
& \mathbf{M}_{4}, \mathbf{M}_{6}, \mathbf{M}_{20}, \mathbf{M}_{22}=\mathbf{B}+\overline{\mathbf{C}}+\mathbf{E} \\
& \mathbf{M}_{5}, \mathbf{M}_{7}, \mathbf{M}_{13}, \mathbf{M}_{15}, \mathbf{M}_{21}, \mathbf{M}_{23}, \mathbf{M}_{29}, \\
& \mathbf{M}_{31}=\overline{\mathbf{C}}+\overline{\mathbf{E}} \\
& \mathbf{M}_{\mathbf{8}}, \mathbf{M}_{9}, \mathbf{M}_{10}, \mathbf{M}_{11}, \mathbf{M}_{24}, \mathbf{M}_{25}, \mathbf{M}_{26}, \\
& \mathbf{M}_{27}=\overline{\mathbf{B}}+\mathbf{C}
\end{aligned}
$$

Ex: $\mathrm{F}=\sum \mathrm{m}(0,1,4,5,6,13,14,15,22,24,25,28,29,30,31)$ is SOP
POS is $\mathrm{F}=\pi \mathrm{M}(2,3,7,8,9,10,11,12,16,17,18,19,20,21,23,26,27)$
The real minimal expression is the minimal of the SOP and POS forms.
The reduction is done as

1. There is no isolated 1 s
2. M_{12} can go only with m_{13}. Form a 2 -square which is read as $\mathrm{A}^{\text {' }} \mathrm{BCD}$ '
3. M_{0} can go with $\mathrm{m}_{2}, \mathrm{~m}_{16}$ and m_{18}. so form a 4 -square which is read as $\mathrm{B}^{‘} \mathrm{C}^{‘} \mathrm{E}^{\text {‘ }}$
4. $\mathrm{M}_{20}, \mathrm{~m}_{21}, \mathrm{~m}_{17}$ and m_{16} form a 4 -square which is read as $\mathrm{AB}^{‘} \mathrm{D}^{\text {‘ }}$
5. $\mathrm{M} 2, \mathrm{~m} 3, \mathrm{~m} 18, \mathrm{~m} 19, \mathrm{~m} 10, \mathrm{~m} 11, \mathrm{~m} 26$ and m 27 form an 8 -square which is read as $\mathrm{C}^{‘} \mathrm{~d}$
6. Write all the product terms in SOP form.

So the minimal expression is
$\mathrm{F}_{\text {min }}=\mathrm{A}^{‘} \mathrm{BCD}^{‘}+\mathrm{B}^{`} \mathrm{C}^{‘} \mathrm{E}^{‘}+\mathrm{AB}^{`} \mathrm{D}^{‘}+\mathrm{C}^{`} \mathrm{D}(16$ inputs $)$

In the POS k-map ,the reduction is done as:

1. There are no isolated 0 s
M_{1} can go only with M_{5}. So, make a 2 -square, which is read as $(A+B+D+\bar{E})$.
2.

M_{4} can go with M_{5}, M_{7}, and M_{6} to form a 4 -square, which is read as $(A+B+\bar{C})$.
4. M_{8}
5. M_{28}
6. M_{30}
7. Sum terms in POS form. So the minimal expression in POS is

$$
F_{\min }=A^{`} B^{\prime} D^{`}+B^{`} C^{`} E^{〔}+A B^{`} D^{`}+C^{`} D
$$

Six variable k-map:

Six variable k-map can have $2^{6}=64$ combinations as
---ABCDEF with minterms $\mathrm{m}_{0}, \mathrm{~m}_{1-----\mathrm{m}_{63}}$ respectively in SOP \& (A+B+C+D+E+F), ----------($+\quad+\quad+\quad+\quad$) with maxterms $\mathrm{M}_{0}, \mathrm{M}_{1},---------\mathrm{M}_{63}$ respectively in POS form. It has $2^{6}=64$ squares or cells of the k-map are divided into 4 blocks of 16 squares each.

Some possible groupings in a six variable k-map
Don't care combinations:For certain input combinations, the value of the output is unspecified either because the input combinations are invalid or because the precise value of the output is of no consequence. The combinations for which the value of experiments are not specified are called don't care combinations are invalid or because the precise value of the output is of no consequence. The combinations for which the value of expressions is not specified are called don't care combinations or Optional Combinations, such expressions stand incompletely specified. The output is a don't care for these invalid combinations.

Ex:In XS-3 code system, the binary states $0000,0001,0010,1101,1110,1111$ are unspecified. \& never occur called don't cares.

A standard SOP expression with don't cares can be converted into a standard POS form by keeping the don't cares as they are \& writing the missing minterms of the SOP form as the maxterms of the POS form viceversa.

Don't cares denoted by ${ }_{=} X^{\text {‘ }}$ or ${ }_{\underline{C}} \varphi^{\text {‘ }}$
$E x: f=\sum m(1,5,6,12,13,14)+d(2,4)$
Or $\mathrm{f}=\pi \mathrm{M}(0,3,7,9,10,11,15) \cdot \pi \mathrm{d}(2,4)$
SOP minimal form $\mathrm{f}_{\text {min }}=\quad+\mathrm{B}+$
POS minimal form $\mathrm{f}_{\min }=(\mathrm{B}+\mathrm{D})(+\mathrm{B})(+\mathrm{D})$

$$
=++++(+
$$

(a) $f=B \bar{C}+\bar{B} D+\bar{A} \bar{C} D$

(b) $\mathrm{f}=(\mathrm{B}+\mathrm{D})(\overline{\mathrm{A}}+\mathrm{B})(\overline{\mathrm{C}}+\overline{\mathrm{D}})$

(c) NOR logic

Prime implicants, Essential Prime implicants, Redundant prime implicants:

Each square or rectangle made up of the bunch of adjacent minterms is called a subcube. Each of these subcubes is called a Prime implicant (PI). The PI which contains at leastone which cannot be covered by any other prime implicants is called as Essential Prime implicant (EPI).The PI whose each 1 is covered at least by one EPI is called a Redundant Prime implicant (RPI). A PI which is neither an EPI nor a RPI is called a Selective Prime implicant (SPI).

The function has unique MSP comprising EPI is

$$
F(A, B, C, D)=C D+A B C+A D+B
$$

The RPI_BD` may be included without changing the function but the resulting expression would not be in minimal SOP(MSP) form.

Essential and Redundant Prime Implicants
$F(A, B, C, D)=\sum m(0,4,5,10,11,13,15)$ SPI are marked by dotted squares, shows MSP form of a function need not be unique.

Essential and Selective Prime Implicants
Here, the MSP form is obtained by including two EPI‘s \& selecting a set of SPI‘s to cover remaining uncovered minterms $5,13,15$. \& these can be covered as
(A) $(4,5) \&(13,15)---------B+A B D$
(B) $(5,13) \&(13,15)-------B D+A B D$
(C) $(5,13) \&(15,11)------$ B D+ACD
F(A,B,C,D)= +A C---------EPI‘s + B +ABD
(OR)
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\quad+\mathrm{A}$
C---------EPI‘s +
B D+ABD
(OR)

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\quad+\mathrm{A}
$$

\qquad EPI‘s +
B $\mathrm{D}+\mathrm{ACD}$

False PI's Essential False PI's, Redundant False PI's \& Selective False PI's:

The maxterms are called falseminterms. The PI's is obtained by using the maxterms are called False PI‘s (FPI). The FPI which contains at least one _0‘ which can't be covered by only other FPI is called an Essential False Prime implicant (ESPI)

$$
\begin{gathered}
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,1,2,3,4,8,12) \\
=\pi \mathrm{M}(5,6,7,9,10,11,13,14,15) \\
\mathrm{F}_{\min }=(+)(+)(+)(+)
\end{gathered}
$$

All the FPI, EFPI's as each of them contain atleast one ${ }_{0} 0$ ' which can't be covered by any other FPI

