4- Bit MagnitudeComparator:

The logic for a 4-bit magnitude comparator: Let the two 4-bit numbers be $A = A_3 A_2 A_1 A_0$ and $B = B_3 B_2 B_1 B_0$.

- 1. If $A_3 = 1$ and $B_3 = 0$, then A > B. Or
- 2. If A_3 and B_3 coincide, and if $A_2 = 1$ and $B_2 = 0$, then A > B. Or
- 3. If A_3 and B_3 coincide, and if A_2 and B_2 coincide, and if $A_1 = 1$ and $B_1 = 0$, then A > B. Or
 - 4. If A₃ and B₃ coincide, and if A₂ and B₂ coincide, and if A₁ and B₁ coincide, and if A₀ = 1 and B₀ = 0, then A > B.

From these statements, we see that the logic expression for A > B can be written as

$$\begin{split} (A > B) = A_{3}\overline{B}_{3} + (A_{3} \odot B_{3})A_{2}\overline{B}_{2} + (A_{3} \odot B_{3})(A_{2} \odot B_{2})A_{1}\overline{B}_{1} \\ + (A_{3} \odot B_{3})(A_{2} \odot B_{2})(A_{1} \odot B_{1})A_{0}\overline{B}_{0} \end{split}$$

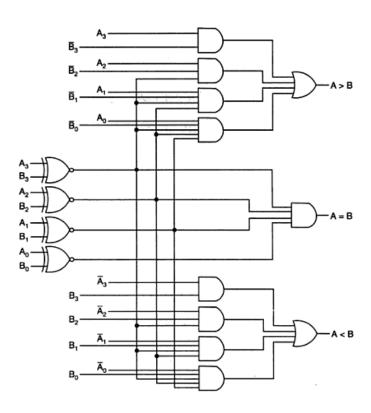
Similarly, the logic expression for A < B can be written as

$$A < B = \overline{A}_3 B_3 + (A_3 \odot B_3) \overline{A}_2 B_2 + (A_3 \odot B_3) (A_2 \odot B_2) \overline{A}_1 B_1 + (A_3 \odot B_3) (A_2 \odot B_2) (A_1 \odot B_1) \overline{A}_0 B_0$$

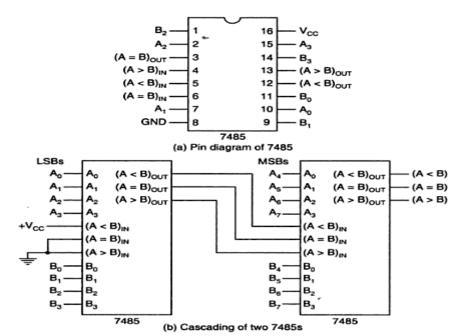
If A_3 and B_3 coincide and if A_2 and B_2 coincide and if A_1 and B_1 coincide and if A_0 and B_0 coincide, then A = B.

So the expression for A = B can be written as

$$(A = B) = (A_3 \odot B_3)(A_2 \odot B_2)(A_1 \odot B_1)(A_0 \odot B_0)$$

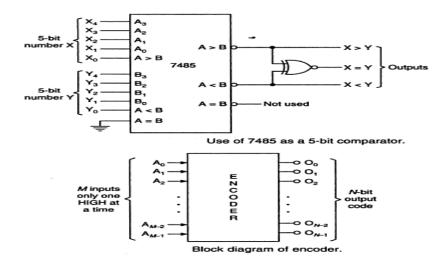


IC Comparator:



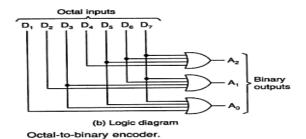
Pin diagram and cascading of 7485 4-bit comparators.

ENCODERS:

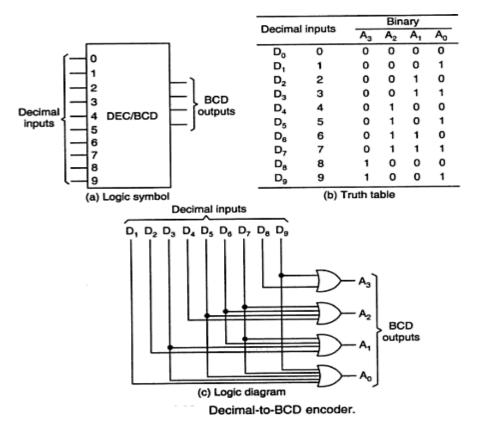


Octal to Binary Encoder:

Octal digits		Binary		
		A ₂	Α,	Ao
D ₀	0	0	0	0
D ₁	1	0	0	1
D ₂	2	0	1	О
D ₃	3	0	1	1
D ₄	4	1	О	0
D ₅	5	1	О	1
D ₆	6	1	1	0
D ₅ D ₆ D ₇	7	1	1	1
	(a) T	ruth ta	able	



Decimal to BCD Encoder:

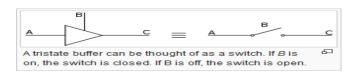


Tristate bus system:

In digital electronics**three-state**, **tri-state**, or **3-state**logic allows an output port to assume a high impedance state in addition to the 0 and 1 logic levels, effectively removing the output from the circuit.

This allows multiple circuits to share the same output line or lines (such as a bus which cannot listen to more than one device at a time).

Three-state outputs are implemented in many registers, bus drivers, and flip-flops in the 7400 and 4000 series as well as in other types, but also internally in many integrated circuits. Other typical uses are internal and external buses in microprocessors, computer memory, and peripherals. Many devices are controlled by an active-low input called OE (Output Enable) which dictates whether the outputs should be held in a high-impedance state or drive their respective loads (to either 0- or 1-level).



INPUT		OUTPUT	
A	В	С	
0	1	0	
1		1	
×	O	Z (high impedance)	