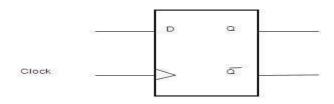
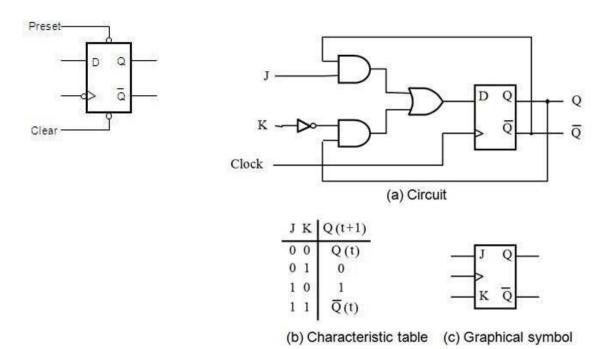

Flip-Flops

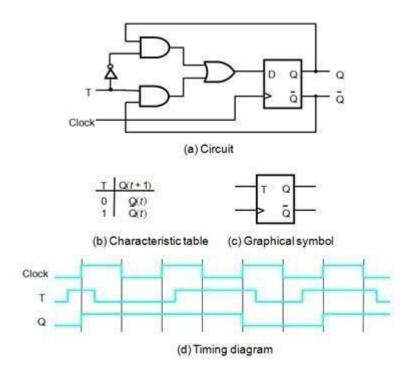

- A flip-flop is a storage element based on the gated latch principle
- It can have its output state changed only on the edge of the controlling clocksignal
- We consider two types:

- Edge-triggered flip-flop is affected only by the input values present when theactive edge of the clock occurs
- Master-slave flip-flop is built with two gatedlatches
- The master stage is active during half of the clock cycle, and the slave stage is active during the other half.
- The output value of the flip-flop changes on the edge of the clock that activates the transfer into the slave stage.

Master-Slave D Flip-Flop



A Positive-Edge-Triggered D Flip-Flop



Graphical symbol

Master-Slave D Flip-Flop with Clear and Preset

T Flip-Flop

Excitation Tables

Previous State -> Present State	D
0 -> 0	0
0 -> 1	1
1 -> 0	0
1 -> 1	1

Previous State -> Present State	J	K
0 -> 0	0	Х
0 -> 1	1	Χ
1 -> 0	X	1
1 -> 1	Х	0

Previous State -> Present State	S	R
0 -> 0	0	X
0 -> 1	1	0
1 -> 0	0	1
1 -> 1	X	0

Previous State -> Present State	T.
0 -> 0	0
0 -> 1	1
1 -> 0	1
1 -> 1	0