Unit-II

Minimization Techniques

Two-variable k-map:

A two-variable k-map can have $2^{2}=4$ possible combinations of the input variables A and B Each of these combinations, , $\mathrm{B}, \mathrm{A}, \mathrm{AB}$ (in the SOP form) is called a minterm. The minterm may be represented in terms of their decimal designations - m0 for , m1 for $B, m 2$ for A and $m 3$ for $A B$, assuming that A represents the MSB. The letter m stands for minterm and the subscript represents the decimal designation of the minterm. The presence or absence of a minterm in the expression indicates that the output of the logic circuit assumes logic 1 or logic 0 level for that combination of input variables.

The expression $\mathrm{f}=,+\mathrm{B}+\mathrm{A}+\mathrm{AB}$, it can be expressed using min

$$
\text { term as } \mathrm{F}=\mathrm{m} 0+\mathrm{m} 2+\mathrm{m} 3=\sum \mathrm{m}(0,2,3)
$$

Using Truth Table:

Minterm	Inputs		Output
	A	B	F
0	0	0	1
1	0	1	0
2	1	0	1
3	1	1	1

A 1 in the output contains that particular minterm in its sum and a 0 in that column indicates that the particular mintermdoes not appear in the expression for output. this information can also be indicated by a two-variable k-map.

Mapping of SOP Expresions:

A two-variable k-map has $22=4$ squares .These squares are called cells. Each square on the kmap represents a unique minterm. The minterm designation of the squares are placed in any square, indicates that the corresponding minterm does output expressions. And a 0 or no entry in any square indicates that the corresponding minterm does not appear in the expression for output.

The minterms of a two-variable k-map

The mapping of the expressions $=\sum \mathrm{m}(0,2,3)$ is

k-map of $\sum \mathrm{m}(0,2,3)$
EX: Map the expressions $\mathrm{f}=\mathrm{B}+\mathrm{A}$
$\mathrm{F}=\mathrm{m}_{1}+\mathrm{m}_{2}=\sum \mathrm{m}(1,2)$ The k-map is

Minimizations of SOP expressions:

To minimize Boolean expressions given in the SOP form by using the k-map, look for adjacent adjacent squares having 1 's minterms adjacent to each other, and combine them to form larger squares to eliminate some variables. Two squares are said to be adjacent to each other, if their minterms differ in only one variable. (i.e, B \& A differ only in one variable. so they may be combined to form a 2 -square to eliminate the variable B.similarly all other.

The necessary condition for adjacency of minterms is that their decimal designations must differ by a power of 2 . A minterm can be combined with any number of minterms adjacent to it to form larger squares. Two minterms which are adjacent to each other can be combined to form a bigger square called a 2 -square or a pair. This eliminates one variable - the variable that is not common to both the minterms. For EX:
m 0 and m 1 can be combined to yield,

$$
\mathrm{f}_{1}=\mathrm{m} 0+\mathrm{m} 1=+\mathrm{B}=(\mathrm{B}+
$$

$)=\mathrm{m} 0$ and m 2 can be combined to yield,

$$
\mathrm{f}_{2}=\mathrm{m} 0+\mathrm{m} 2=+=(+)=
$$

m 1 and m 3 can be combined to yield,

$$
\mathrm{f}_{3}=\mathrm{m} 1+\mathrm{m} 3=\mathrm{B}+\mathrm{AB}=\mathrm{B}(+)=\mathrm{B}
$$

m 2 and m 3 can be combined to yield,
$\mathrm{f}_{4}=\mathrm{m} 2+\mathrm{m} 3=\mathrm{A}+\mathrm{AB}=\mathrm{A}(\mathrm{B}+)=\mathrm{A}$
$\mathrm{m}_{0}, \mathrm{~m}_{1}, \mathrm{~m}_{2}$ and m_{3} can be combined to yield,

$$
\begin{aligned}
& =++\mathrm{A}+\mathrm{AB} \\
& =(\mathrm{B}+)+\mathrm{A}(\mathrm{~B}+) \\
& =+\mathrm{A} \\
& =1
\end{aligned}
$$

The possible minterm groupings in a two-variable k-map.
Two 2-squares adjacent to each other can be combined to form a 4-square. A 4-square eliminates 2 variables. A 4 -square is called a quad. To read the squares on the map after minimization, consider only those variables which remain constant through the square, and ignore the variables which are varying. Write the non complemented variable if the variable is remaining constant as a 1 , and the complemented variable if the variable is remaining constant as a 0 , and write the variables as a product term. In the above figure f_{1} read as, because, along the square, A remains constant as a 0 , that is, as, where as B is changing from 0 to 1 .

EX: Reduce the minterm $\mathrm{f}=+\mathrm{A}+\mathrm{AB}$ using mapping Expressed in terms of minterms, the given expression is $F=m_{0}+m_{1}+m_{2}+m_{3}=m \sum(0,1,3) \&$ the figure shows the k-map for f and its reduction. In one 2 -square, A is constant as a 0 but B varies from a 0 to a 1 , and in the other 2 square, B is constant as a 1 but A varies from a 0 to a 1 . So, the reduced expressions is +B .

It requires two gate inputs for realization as

$\mathrm{f}=+\mathrm{B} \quad$ (k-map in SOP form, and logic diagram.)

The main criterion in the design of a digital circuit is that its cost should be as low as possible. For that the expression used to realize that circuit must be minimal.Since the cost is proportional to number of gate inputs in the circuit in the circuit, an expression is considered minimal only if it corresponds to the least possible number of gate inputs. \& there is no guarantee for that k -map in SOP is the real minimal. To obtain real minimal expression, obtain the minimal expression both in SOP \& POS form form by using k-maps and take the minimal of these two minimals.

The 1's on the k-map indicate the presence of minterms in the output expressions, where as the 0s indicate the absence of minterms .Since the absence of a minterm in the SOP expression means the presense of the corresponding maxterm in the POS expression of the same .when a SOP expression is plotted on the k-map, 0s or no entries on the k-map represent the maxterms. To obtain the minimal expression in the POS form, consider the 0s on the k-map and follow the procedure used for combining 1s. Also, since the absence of a maxterm in the POS expression means the presence of the corresponding minterm in the SOP expression of the same, when a POS expression is plotted on the k-map, 1s or no entries on the k-map represent the minterms.

Mapping of POS expressions:

Each sum term in the standard POS expression is called a maxterm. A function in two variables (A, B) has four possible maxterms, $\mathrm{A}+\mathrm{B}, \mathrm{A}+,+\mathrm{B},+$
. They are represented as $\mathrm{M}_{0}, \mathrm{M}_{1}, \mathrm{M} 2$, and M3respectively. The uppercase letter M stands for maxterm and its subscript denotes the decimal designation of that maxterm obtained by treating the non-complemented variable as a 0 and the complemented variable as a 1 and putting them side by side for reading the decimal equivalent of the binary number so formed.

For mapping a POS expression on to the k-map, 0s are placed in the squares corresponding to the maxterms which are presented in the expression an d1s are placed in the squares corresponding to the maxterm which are not present in the expression. The decimal designation of the squares of the squares for maxterms is the same as that for the minterms. A two-variable k-map \& the associated maxterms are asthe maxterms of a two-variable k-map

The possible maxterm groupings in a two-variable k-map

