
Logistic Regression in Machine Learning

o Logistic regression is one of the most popular Machine Learning algorithms, which

comes under the Supervised Learning technique. It is used for predicting the

categorical dependent variable using a given set of independent variables.

o Logistic regression predicts the output of a categorical dependent variable. Therefore

the outcome must be a categorical or discrete value. It can be either Yes or No, 0 or 1,

true or False, etc. but instead of giving the exact value as 0 and 1, it gives the

probabilistic values which lie between 0 and 1.

o Logistic Regression is much similar to the Linear Regression except that how they are

used. Linear Regression is used for solving Regression problems, whereas Logistic

regression is used for solving the classification problems.

o In Logistic regression, instead of fitting a regression line, we fit an "S" shaped logistic

function, which predicts two maximum values (0 or 1).

o The curve from the logistic function indicates the likelihood of something such as

whether the cells are cancerous or not, a mouse is obese or not based on its weight, etc.

o Logistic Regression is a significant machine learning algorithm because it has the

ability to provide probabilities and classify new data using continuous and discrete

datasets.

o Logistic Regression can be used to classify the observations using different types of

data and can easily determine the most effective variables used for the classification.

The below image is showing the logistic function:

Note: Logistic regression uses the concept of predictive modeling as regression;

therefore, it is called logistic regression, but is used to classify samples; Therefore, it

falls under the classification algorithm.

Logistic Function (Sigmoid Function):

o The sigmoid function is a mathematical function used to map the predicted values to

probabilities.

o It maps any real value into another value within a range of 0 and 1.

o The value of the logistic regression must be between 0 and 1, which cannot go beyond

this limit, so it forms a curve like the "S" form. The S-form curve is called the

Sigmoid function or the logistic function.

o In logistic regression, we use the concept of the threshold value, which defines the

probability of either 0 or 1. Such as values above the threshold value tends to 1, and a

value below the threshold values tends to 0.

Assumptions for Logistic Regression:

o The dependent variable must be categorical in nature.

o The independent variable should not have multi-collinearity.

Logistic Regression Equation:

The Logistic regression equation can be obtained from the Linear Regression equation. The

mathematical steps to get Logistic Regression equations are given below:

o We know the equation of the straight line can be written as:

o In Logistic Regression y can be between 0 and 1 only, so for this let's divide the above

equation by (1-y):

o But we need range between -[infinity] to +[infinity], then take logarithm of the

equation it will become:

The above equation is the final equation for Logistic Regression.

Type of Logistic Regression:

On the basis of the categories, Logistic Regression can be classified into three types:

o Binomial: In binomial Logistic regression, there can be only two possible types of the

dependent variables, such as 0 or 1, Pass or Fail, etc.

o Multinomial: In multinomial Logistic regression, there can be 3 or more possible

unordered types of the dependent variable, such as "cat", "dogs", or "sheep"

o Ordinal: In ordinal Logistic regression, there can be 3 or more possible ordered types

of dependent variables, such as "low", "Medium", or "High".

Python Implementation of Logistic Regression (Binomial)

To understand the implementation of Logistic Regression in Python, we will use the below

example:

Example: There is a dataset given which contains the information of various users obtained

from the social networking sites. There is a car making company that has recently launched a

new SUV car. So the company wanted to check how many users from the dataset, wants to

purchase the car.

For this problem, we will build a Machine Learning model using the Logistic regression

algorithm. The dataset is shown in the below image. In this problem, we will predict

the purchased variable (Dependent Variable) by using age and salary (Independent

variables).

Steps in Logistic Regression: To implement the Logistic Regression using Python, we will

use the same steps as we have done in previous topics of Regression. Below are the steps:

o Data Pre-processing step

o Fitting Logistic Regression to the Training set

o Predicting the test result

o Test accuracy of the result(Creation of Confusion matrix)

o Visualizing the test set result.

1. Data Pre-processing step: In this step, we will pre-process/prepare the data so that we

can use it in our code efficiently. It will be the same as we have done in Data pre-processing

topic. The code for this is given below:

1. #Data Pre-procesing Step

2. # importing libraries

3. import numpy as nm

4. import matplotlib.pyplot as mtp

5. import pandas as pd

6.

7. #importing datasets

8. data_set= pd.read_csv('user_data.csv')

By executing the above lines of code, we will get the dataset as the output. Consider the

given image:

Now, we will extract the dependent and independent variables from the given dataset. Below

is the code for it:

1. #Extracting Independent and dependent Variable

2. x= data_set.iloc[:, [2,3]].values

3. y= data_set.iloc[:, 4].values

In the above code, we have taken [2, 3] for x because our independent variables are age and

salary, which are at index 2, 3. And we have taken 4 for y variable because our dependent

variable is at index 4. The output will be:

Now we will split the dataset into a training set and test set. Below is the code for it:

1. # Splitting the dataset into training and test set.

2. from sklearn.model_selection import train_test_split

3. x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 0.25, random_state=0)

The output for this is given below:

For test

set:

For training set:

In logistic regression, we will do feature scaling because we want accurate result of

predictions. Here we will only scale the independent variable because dependent variable

have only 0 and 1 values. Below is the code for it:

1. #feature Scaling

2. from sklearn.preprocessing import StandardScaler

3. st_x= StandardScaler()

4. x_train= st_x.fit_transform(x_train)

5. x_test= st_x.transform(x_test)

The scaled output is given below:

2. Fitting Logistic Regression to the Training set:

We have well prepared our dataset, and now we will train the dataset using the training set.

For providing training or fitting the model to the training set, we will import

the LogisticRegression class of the sklearn library.

After importing the class, we will create a classifier object and use it to fit the model to the

logistic regression. Below is the code for it:

1. #Fitting Logistic Regression to the training set

2. from sklearn.linear_model import LogisticRegression

3. classifier= LogisticRegression(random_state=0)

4. classifier.fit(x_train, y_train)

Output: By executing the above code, we will get the below output:

Out[5]:

1. LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

2. intercept_scaling=1, l1_ratio=None, max_iter=100,

3. multi_class='warn', n_jobs=None, penalty='l2',

4. random_state=0, solver='warn', tol=0.0001, verbose=0,

5. warm_start=False)

Hence our model is well fitted to the training set.

3. Predicting the Test Result

Our model is well trained on the training set, so we will now predict the result by using test

set data. Below is the code for it:

1. #Predicting the test set result

2. y_pred= classifier.predict(x_test)

In the above code, we have created a y_pred vector to predict the test set result.

Output: By executing the above code, a new vector (y_pred) will be created under the

variable explorer option. It can be seen as:

The above output image shows the corresponding predicted users who want to purchase or

not purchase the car.

4. Test Accuracy of the result

Now we will create the confusion matrix here to check the accuracy of the classification. To

create it, we need to import the confusion_matrix function of the sklearn library. After

importing the function, we will call it using a new variable cm. The function takes two

parameters, mainly y_true(the actual values) and y_pred (the targeted value return by the

classifier). Below is the code for it:

1. #Creating the Confusion matrix

2. from sklearn.metrics import confusion_matrix

3. cm= confusion_matrix()

Output:

By executing the above code, a new confusion matrix will be created. Consider the below

image:

We can find the accuracy of the predicted result by interpreting the confusion matrix. By

above output, we can interpret that 65+24= 89 (Correct Output) and 8+3= 11(Incorrect

Output).

5. Visualizing the training set result

Finally, we will visualize the training set result. To visualize the result, we will

use ListedColormap class of matplotlib library. Below is the code for it:

1. #Visualizing the training set result

2. from matplotlib.colors import ListedColormap

3. x_set, y_set = x_train, y_train

4. x1, x2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() -

 1, stop = x_set[:, 0].max() + 1, step =0.01),

5. nm.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01))

6. mtp.contourf(x1, x2, classifier.predict(nm.array([x1.ravel(), x2.ravel()]).T).reshape(x1

.shape),

7. alpha = 0.75, cmap = ListedColormap(('purple','green')))

8. mtp.xlim(x1.min(), x1.max())

9. mtp.ylim(x2.min(), x2.max())

10. for i, j in enumerate(nm.unique(y_set)):

11. mtp.scatter(x_set[y_set == j, 0], x_set[y_set == j, 1],

12. c = ListedColormap(('purple', 'green'))(i), label = j)

13. mtp.title('Logistic Regression (Training set)')

14. mtp.xlabel('Age')

15. mtp.ylabel('Estimated Salary')

16. mtp.legend()

17. mtp.show()

In the above code, we have imported the ListedColormap class of Matplotlib library to

create the colormap for visualizing the result. We have created two new

variables x_set and y_set to replace x_train and y_train. After that, we have used

the nm.meshgrid command to create a rectangular grid, which has a range of -1(minimum)

to 1 (maximum). The pixel points we have taken are of 0.01 resolution.

To create a filled contour, we have used mtp.contourf command, it will create regions of

provided colors (purple and green). In this function, we have passed the classifier.predict to

show the predicted data points predicted by the classifier.

Output: By executing the above code, we will get the below output:

The graph can be explained in the below points:

o In the above graph, we can see that there are some Green points within the green

region and Purple points within the purple region.

o All these data points are the observation points from the training set, which shows the

result for purchased variables.

o This graph is made by using two independent variables i.e., Age on the x-

axis and Estimated salary on the y-axis.

o The purple point observations are for which purchased (dependent variable) is

probably 0, i.e., users who did not purchase the SUV car.

o The green point observations are for which purchased (dependent variable) is

probably 1 means user who purchased the SUV car.

o We can also estimate from the graph that the users who are younger with low salary,

did not purchase the car, whereas older users with high estimated salary purchased the

car.

o But there are some purple points in the green region (Buying the car) and some green

points in the purple region(Not buying the car). So we can say that younger users with

a high estimated salary purchased the car, whereas an older user with a low estimated

salary did not purchase the car.

The goal of the classifier:

We have successfully visualized the training set result for the logistic regression, and our

goal for this classification is to divide the users who purchased the SUV car and who did not

purchase the car. So from the output graph, we can clearly see the two regions (Purple and

Green) with the observation points. The Purple region is for those users who didn't buy the

car, and Green Region is for those users who purchased the car.

Linear Classifier:

As we can see from the graph, the classifier is a Straight line or linear in nature as we have

used the Linear model for Logistic Regression. In further topics, we will learn for non-linear

Classifiers.

Visualizing the test set result:

Our model is well trained using the training dataset. Now, we will visualize the result for

new observations (Test set). The code for the test set will remain same as above except that

here we will use x_test and y_test instead of x_train and y_train. Below is the code for it:

1. #Visulaizing the test set result

2. from matplotlib.colors import ListedColormap

3. x_set, y_set = x_test, y_test

4. x1, x2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() -

 1, stop = x_set[:, 0].max() + 1, step =0.01),

5. nm.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01))

6. mtp.contourf(x1, x2, classifier.predict(nm.array([x1.ravel(), x2.ravel()]).T).reshape(x1

.shape),

7. alpha = 0.75, cmap = ListedColormap(('purple','green')))

8. mtp.xlim(x1.min(), x1.max())

9. mtp.ylim(x2.min(), x2.max())

10. for i, j in enumerate(nm.unique(y_set)):

11. mtp.scatter(x_set[y_set == j, 0], x_set[y_set == j, 1],

12. c = ListedColormap(('purple', 'green'))(i), label = j)

13. mtp.title('Logistic Regression (Test set)')

14. mtp.xlabel('Age')

15. mtp.ylabel('Estimated Salary')

16. mtp.legend()

17. mtp.show()

Output:

The above graph shows the test set result. As we can see, the graph is divided into two

regions (Purple and Green). And Green observations are in the green region, and Purple

observations are in the purple region. So we can say it is a good prediction and model. Some

of the green and purple data points are in different regions, which can be ignored as we have

already calculated this error using the confusion matrix (11 Incorrect output).

Hence our model is pretty good and ready to make new predictions for this classification

problem.

	Logistic Regression in Machine Learning
	Note: Logistic regression uses the concept of predictive modeling as regression; therefore, it is called logistic regression, but is used to classify samples; Therefore, it falls under the classification algorithm.
	Logistic Function (Sigmoid Function):
	Assumptions for Logistic Regression:
	Logistic Regression Equation:
	Type of Logistic Regression:
	Python Implementation of Logistic Regression (Binomial)

