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Computational Learning Theory

• Computational learning theory, or CoLT for short, is a
field of study concerned with the use of formal
mathematical methods applied to learning systems.

• It seeks to use the tools of theoretical computer science to
quantify learning problems. This includes characterizing
the difficulty of learning specific tasks.

• Computational learning theory may be thought of as an
extension or sibling of statistical learning theory,
or SLT for short, that uses formal methods to quantify
learning algorithms.

• Computational Learning Theory (CoLT): Formal study
of learning tasks.

• Statistical Learning Theory (SLT): Formal study of
learning algorithms.



• This division of learning tasks vs. learning algorithms is
arbitrary, and in practice, there is a lot of overlap between the
two fields.

• One can extend statistical learning theory by taking
computational complexity of the learner into account. This
field is called computational learning theory or COLT.

• The focus in computational learning theory is typically on
supervised learning tasks. Formal analysis of real problems
and real algorithms is very challenging. As such, it is common
to reduce the complexity of the analysis by focusing on binary
classification tasks and even simple binary rule-based systems.
As such, the practical application of the theorems may be
limited or challenging to interpret for real problems and
algorithms.

• The main unanswered question in learning is this: How can we
be sure that our learning algorithm has produced a hypothesis
that will predict the correct value for previously unseen inputs?



Questions explored in computational learning theory might
include:

• How do we know a model has a good approximation for the
target function?

• What hypothesis space should be used?

• How do we know if we have a local or globally good solution?

• How do we avoid overfitting?

• How many data examples are needed?

As a machine learning practitioner, it can be useful to know about
computational learning theory and some of the main areas of
investigation. The field provides a useful grounding for what we
are trying to achieve when fitting models on data, and it may
provide insight into the methods.

• PAC Learning.

• VC Dimension.

The most widely discussed areas of study from computational
learning theory are:



Probably Approximately Correct Learning (PAC) 
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 PAC is a framework for analyzing learning algorithms mathematically  

 

 With high Probability, PAC Learning algorithms find a hypothesis that is 

approximately identical to the hidden target concept. 
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Notation:-  

 Instance Space, X 

 Concept Class, C – Family of functions, c 

                c: X        {0,1}  

 Hypothesis Class, H – Family of functions, h 

                            h: X        {0,1}  

 Probability Distribution, F – Training Samples are generated randomly from 

X according to F 

 Learning Algorithm, A  

Definition:- A concept class C is PAC- learnable, if there is an algorithm A which 

for samples drawn with any probability distribution F and any concept c ϵ C, with 

high probability produce a hypothesis h ϵ H, whose error is small. 

True Error of h:-  
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The true error of h w.r.t target concept C and distribution F, 

ErrorF (h) = PxϵF (h(x) ≠ c(x)) 

Length (Dimension) of instance              Dimensions of data (n) 

Size of a concept: - Size of concept is the number of parameters used to 

represent a concept. 

Suppose consider a concept like 

Axis aligned rectangle is represented by 4 parameters (a ≤ x ≤ b)          

and (c ≤ y ≤ d) so the size of concept is 4. 

Formal Definition:- A concept class C is said to be PAC learnable by 

algorithm L if for all c ϵ C, distribution F over X, ε such that 0 < ε < ½ 

and δ such that 0 < δ < ½, the learner, L will output a hypothesis h with 

probability at least (1- δ) and with ErrorF (h) ≤  ε. 

P > 1- δ and error ≤ ε 

 

 



Example: - Instance Space X – set of all points (x, y) in a plane. 

Length of instance – 2 

Concept class C – Set of all axis aligned rectangle of the form (a ≤ x ≤ b)            

and (c ≤ y ≤ d), there are 4 parameters (a, b, c, d). 

So size of concept – 4 

Hypothesis Space H – Set of all hypothesis to be equal to the set C of 

concepts. 

 

x 

y 

+ 

+ 
C or h 

(x, y) 

- 
- 

- 

a b 

c 

d 

This Problem is a 

PAC learnable 



VC Dimension (Theory of Learning Algorithms)
• Vapnik–Chervonenkis theory, or VC theory for short, refers to a

theoretical machine learning framework developed by Vladimir
Vapnik and Alexey Chervonenkis.

• VC theory learning seeks to quantify the capability of a learning
algorithm and might be considered the premier sub-field of statistical
learning theory.

• VC theory is comprised of many elements, most notably the VC
dimension.

• The VC dimension quantifies the complexity of a hypothesis space, e.g.
the models that could be fit given a representation and learning algorithm.

• One way to consider the complexity of a hypothesis space (space of
models that could be fit) is based on the number of distinct hypotheses it
contains and perhaps how the space might be navigated. The VC
dimension is a clever approach that instead measures the number of
examples from the target problem that can be discriminated by hypotheses
in the space.

• The VC dimension measures the complexity of the hypothesis space […]
by the number of distinct instances from X that can be completely
discriminated using H



• The VC dimension estimates the capability or

capacity of a classification machine learning

algorithm for a specific dataset (number and

dimensionality of examples).

• Formally, the VC dimension is the largest

number of examples from the training dataset

that the space of hypothesis from the algorithm

can “shatter.”

• The VC dimension, VC(H), of hypothesis space

H defined over instance space X is the size of the

largest finite subset of X shattered by H.



• The VC dimension of a classifier is defined by

Vapnik and Chervonenkis to be the cardinality

(size) of the largest set of points that the

classification algorithm can shatter . This may

seem like a simple definition, but it is easy to

misinterpret, so I will now go into more detail

here and explain the key terms in the definition.

We will use 2-D examples for simplicity, but

these ideas generalize to any number of

dimensions.



Shattering a set of points

• A configuration of N points on the plane is just any
placement of N points. In order to have a VC
dimension of at least N, a classifier must be able to
shatter a single configuration of N points. In order
to shatter a configuration of points, the classifier
must be able to, for every possible assignment of
positive and negative for the points, perfectly
partition the plane such that the positive points are
separated from the negative points. For a
configuration of N points, there are 2^N possible
assignments of positive or negative, so the
classifier must be able to properly separate the
points in each of these.



• In the below example, we show that the VC dimension

for a linear classifier is at least 3, since it can shatter this

configuration of 3 points. In each of the 2³ = 8 possible

assignment of positive and negative, the classifier is able

to perfectly separate the two classes.



• Now, we show that a linear classifier is lower than 4. In 

this configuration of 4 points, the classifier is unable to 

segment the positive and negative classes in at least one 

assignment. Two lines would be necessary to separate the 

two classes in this situation. We actually need to prove 

that there does not exist a 4 point configuration that can 

be shattered, but the same logic applies to other 

configurations.



• Since we have now shown that the linear classifier’s VC dimension

is at least 3, and lower than 4, we can finally conclude that its VC

dimension is exactly 3. Again, remember that in order to have a VC

dimension of N, the classifier must only shatter a

single configuration of N points.




