Subject Name: Optimization Techniques

Subject Code: BCA-404 N
Subject Topic: Special Cases of Graphical Solution for LPP

Abhishek Dwivedi
Assistant Professor
Department of Computer Application
UIET, CSJM University, Kanpur

Graphical Method-Special cases

Unique optimal solution

- Multiple optimal solution
- Unbound optimal solution
- No feasible solution

Solve the following linear programming problem graphically:
Max. $Z=4 x+y$... (1)
subject to the constraints:
$\mathrm{x}+\mathrm{y} \leq 50 \ldots$... (2)
$3 x+y \leq 90$... (3)
$x \geq 0, y \geq 0$... (4)

Solution:

- The shaded region given in the figure below is the feasible region determined by the system of constraints (2) to (4).
- We observe that the feasible region OABC is bounded. So, we now use Corner Point Method to determine the maximum value of Z .
- The coordinates of the corner points $\mathrm{O}, \mathrm{A}, \mathrm{B}$ and C are $(0,0),(30,0),(20,30)$ and $(0,50)$ respectively.

Continue......

Hence, maximum value of Z is 120 at the point $(30,0)$.

Case 1:UNIQUE OPTIMAL SOLUTION

Solve the following linear programming problem graphically:
Min. $Z=200 \mathrm{x}+500 \mathrm{y} .$. (1)
subject to the constraints:

$$
\begin{aligned}
& x+2 y \geq 10 \ldots \text { (2) } \\
& 3 x+4 y \leq 24 \ldots \text { (3) } \\
& \text { and } x, y \geq 0 \ldots \text { (4) }
\end{aligned}
$$

- The shaded region in Fig B is the feasible region ABC determined by the system of constraints (2) to (4), which is bounded.
- The coordinates of corner points A, B and C are $(0,5),(4,3)$ and $(0,6)$ respectively.
- Now we evaluate $Z=200 x+500 y$ at these points.

Continue..........

Hence, minimum value of Z is 2300 attained at the unique point $(4,3)$.

Case2:MULTIPLE OPTIMAL SOLUTION

Solve by using graphical method
Max $Z=4 \times 1+3 \times 2$
Subject to constraints
$4 \times 1+3 \times 2 \leq 24$
$\mathrm{x} 1 \leq 4.5$
$\mathrm{x} 2 \leq 6$
and $\mathrm{x} 1, \mathrm{x} 2 \geq 0$

Solution:

The first constraint $4 \times 1+3 \times 2 \leq 24$, written in a form of equation
$4 \mathrm{x} 1+3 \times 2=24$
Put $\mathrm{x} 1=0$, then $\mathrm{x} 2=8$
Put $\mathrm{x} 2=0$, then $\mathrm{x} 1=6$
The coordinates are $(0,8)$ and $(6,0)$
The second constraint $\mathrm{x} 1 \leq 4.5$, written in a
form of equation $\mathrm{x} 1=4.5$
The third constraint $\mathrm{x} 2 \leq 6$, written in a
form of equation $\mathrm{x} 2=6$

Continue.

Corner Point	Corresponding value of \mathbf{Z}
A $(0,6)$	18
B $(1.5,6)$	24
C $(4.5,2)$	24
D $(4.5,0)$	18

- The corner points of feasible region are $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
- Max $Z=24$, which is achieved at both B and C corner points. It can be achieved not only at B and C but every point between B and C.
-Hence the given problem has multiple optimal solutions.

Case 3:UNBOUNDED SOLUTION

Solve by graphical method
Max $Z=3 x 1+5 \times 2$
Subject to $2 \mathrm{x} 1+\mathrm{x} 2 \geq 7$
$x 1+x 2 \geq 6$
$\mathrm{x} 1+3 \mathrm{x} 2 \geq 9$
and $\mathrm{x} 1, \mathrm{x} 2 \geq 0$

- Solution:

The first constraint $2 \mathrm{x} 1+\mathrm{x} 2 \geq 7$, written in a form
of equation $2 \mathrm{x} 1+\mathrm{x} 2=7$
Put x1 $=0$, then $x 2=7$
Put $\mathrm{x} 2=0$, then $\mathrm{x} 1=3.5$
The coordinates are $(0,7)$ and $(3.5,0)$

Continue.

The second constraint $\mathrm{x} 1+\mathrm{x} 2 \geq 6$, written in a
form of equation $x 1+x 2=6$
Put $\mathrm{x} 1=0$, then $\mathrm{x} 2=6$
Put $\mathrm{x} 2=0$, then $\mathrm{x} 1=6$
The coordinates are $(0,6)$ and $(6,0)$.

The third constraint $x 1+3 \times 2 \geq 9$, written in a form of equation $x 1+3 \times 2=9$
Put $\mathrm{x} 1=0$, then $\mathrm{x} 2=3$
Put $x 2=0$, then $x 1=9$ The coordinates are $(0,3)$ and $(9,0)$

Continue.

Corner Points	Value of Z
A (0,7)	35
B $(1,5)$ (Solve the two equations $2 \mathrm{x} 1+\mathrm{x} 2=7$ and $x 1+x 2=6$ to get the coordinates)	28
C (4.5, 1.5) (Solve the two equations $x 1+x 2=6$ and x1+ $3 \times 2=9$ to get the coordinates)	21
D (9,0)	27

Continue.

The corner points of feasible region are $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .

- The values of objective function at corner points are 35, 28, 21 and 27.
- But there exists infinite number of points in the feasible region which is unbounded.
- The value of objective function will be more than the value of these four corner points i.e. the maximum value of the objective function occurs at a point at ∞.
- Hence the given problem has unbounded solution.

Case 4:NO FEASIBLE SOLUTION

Solve graphically
Max Z $=3 \mathrm{x} 1+2 \mathrm{x} 2$
Subject to
$x 1+x 2 \leq 1$
$x 1+x 2 \geq 3$
and $\mathrm{x} 1, \mathrm{x} 2 \geq 0$

Solution:

The first constraint $\mathrm{x} 1+\mathrm{x} 2 \leq 1$, written in a
form of equation $\mathrm{x} 1+\mathrm{x} 2=1$
Put $\mathrm{x} 1=0$, then $\mathrm{x} 2=1$
Put $\mathrm{x} 2=0$, then $\mathrm{x} 1=1$
The coordinates are $(0,1)$ and $(1,0)$

Continue.

The first constraint $x 1+x 2 \geq 3$, written in a form of equation $x 1+x 2=3$
Put x1 $=0$, then $x 2=3$
Put $x 2=0$, then $x 1=3$
The coordinates are $(0,3)$ and $(3,0)$

Continue.

- There is no common feasible region generated by two constraints together i.e. we cannot identify even a single point satisfying the constraints.
- Hence there is no feasible solution.

