Organic anionic transporter

1. Organic Anion Transporters (OAT, SLCO, OATP)

- lonic agents generally exhibit low passive membrane permeability, resulting in their poor bioavailability.
- An organic anion-transporter is a membrane transport protein or 'transporter' that transports organic anions across the cell membrane.
- These are present in the lipid bilayer of the cell membrane. OATs belong to the Solute Carrier Family (SLC), more specifically the Solute Carrier Organic Anion (SLCO) gene subfamily.

- 1. Organic anion transporters (OATs)
- Organic anion transporting polypeptides (OATPs)
- Multiple drug resistance-associated proteins (MRPs)

Organic anion transporters (OAT)

- Five structurally related isoforms i.e. OAT
 OAT 5 have been identified.
- These are expressed in the kidney and have important functions in renal clearance.
- OAT2 is expressed at higher levels in liver as compared to kidney.
- OATs are also expressed to a lesser extent in brain, muscle, eye and placenta.

CSF-side

Blood-side

 Topology characteristics include twelve 129 α-helix two transmembrane domains (TMD), one large hydrophilic extracellular loop between TMD 1 and TMD 2 carrying glycosylation sites and a large intracellular loop containing multiple phosphorylation sites between TMD 6 and TMD 7.

- OATs are polyspecific transporters that interact with various clinically significant organic anion drugs such as
- Non steroidal anti-inflammatory drugs (NSAIDs), β-lactam antibiotics, antiviral drugs, diuretics, antitumor drugs and angiotensin-converting enzyme inhibitors.
- The role of OAT family in the intestinal absorption of drugs seems negligible because they have not been identified in human intestine.

Organic anion transporting polypeptice (OATPs)

- OATPs are the rapidly expanding family of mammalian transporters and transport a wide range of amphipathic endogenous and exogenous organic compounds.
- The topology include twelve TMD containing a large extracellular domain with multiple glycosylation sites.

- organic anions, such as bromosulfophthalein (BSP), bile salts, bilirubin, prostaglandins, and estrogen-conjugates;
- neural steroids and steroid conjugates;
- 3. lipophilic organic cations, e.g., rocuronium; and
- 4. organic dyes, thyroid hormones, and anionic oligopeptides.
- Various pharmaceutically relevant compounds such as digoxin, pravastatin, methotrexate, temocaprilat, benzylpen icillin, fexofenadine, (D-Pen2, D-Pen5)-enkephalin (DPDPE), as well as some NSAIDs.

- Na⁺-independent manner
- 2. Anion exchange mechanism
- 3. Glutathione substrate transport
- 4. Proton-coupled transport mechanism

- Expression of OATPs (OATP-C and OATP-8 occur)
 the basolateral membrane of hepatocytes
- While other OATPs like OATP-B, OATP-D and OATP-E are fairly expressed in tissues including blood-brain barrier, lung, heart, kidney, placenta and intestine.

The regulation of OATPs expression and functional kinetics can occur at both transcriptional and post-transcriptional levels.