Paging



Paging

Physical address space of a process can be noncontiguous; process is allocated
physical memory whenever the latter is available

* Avoids external fragmentation
* Avoids problem of varying sized memory chunks

Divide physical memory into fixed-sized blocks called frames
 Size is power of 2, between 512 bytes and 16 Mbytes

Divide logical memory into blocks of same size called pages

Keep track of all free frames

To run a program of size N pages, need to find N free frames and load program
Set up a page table to translate logical to physical addresses

Backing store likewise split into pages

Still have Internal fragmentation



Address Translation Scheme

* Address generated by CPU is divided into:

* Page number (p) — used as an index into a page table which contains base
address of each page in physical memory

* Page offset (d) — combined with base address to define the physical memory
address that is sent to the memory unit

page number | page offset
P d

m -n n

* For given logical address space 2™ and page size 2"



Paging Hardware

CPU

logical physical
address address 0000 ... 0000
Y
d d

g

page table

f1111

« s 711

physical
memory



Paging Model of Logical and Physical
Memory

frame
number
page O 0
o
page 1 1 | 1| page O
page 2 2 = 2
3 B
page 3 page table 3| page 2
logical 4| page 1
memory
5
6
7| page 3
physical

memory



Paging Example

=2 and n4

0 a

1 b

2 c

3|d

4 =

5 f

6 g 0| 5
7 |h 116
8 N 2|1
9|

10| k 32
11 | page table
12| m

13| n

14| o

15| p

logical memory

32-byte memory and 4-byte pages

0

a [
J
k
I

8 m
n
(8]
o]

12

16

20 a
b
C
d

24 e
f
g
h

28

physical memory



Paging (Cont.)

* Calculating internal fragmentation
* Page size = 2,048 bytes
* Process size = 72,766 bytes
e 35 pages + 1,086 bytes
* Internal fragmentation of 2,048 - 1,086 = 962 bytes
* Worst case fragmentation = 1 frame — 1 byte
* On average fragmentation =1/ 2 frame size
* So small frame sizes desirable?
* But each page table entry takes memory to track

* Page sizes growing over time
» Solaris supports two page sizes —8 KB and 4 MB

* Process view and physical memory now very different
* By implementation process can only access its own memory



Free Frames

free-frame list
14
13
18
20
15

P TN
by

page O
page 1
page 2
page 3
new process
-

Before allocation

(a)

13

14

15

16

17

18

19

20

21

free-frame list
15

P T
a—

page O
page 1
page 2
page 3
new process
..

0[14
1113
2|18
3120

new-process page table

(b)

After allocation

13

14

15

16

17

18

19

20

21

page 1

page O

page 2

page 3




Implementation of Page Table

* Page table is kept in main memory
* Page-table base register (PTBR) points to the page table
* Page-table length register (PTLR) indicates size of the page table

* |[n this scheme every data/instruction access requires two memory
accesses

* One for the page table and one for the data / instruction

* The two memory access problem can be solved by the use of a special
fast-lookup hardware cache called associative memory or translation
look-aside buffers (TLBs)



Implementation of Page Table (Cont.)

* Some TLBs store address-space identifiers (ASIDs) in each TLB entry —
uniquely identifies each process to provide address-space protection
for that process

* Otherwise need to flush at every context switch
e TLBs typically small (64 to 1,024 entries)

* On a TLB miss, value is loaded into the TLB for faster access next time

* Replacement policies must be considered
* Some entries can be wired down for permanent fast access



