
Paging

Paging

• Physical address space of a process can be noncontiguous; process is allocated
physical memory whenever the latter is available

• Avoids external fragmentation
• Avoids problem of varying sized memory chunks

• Divide physical memory into fixed-sized blocks called frames
• Size is power of 2, between 512 bytes and 16 Mbytes

• Divide logical memory into blocks of same size called pages

• Keep track of all free frames

• To run a program of size N pages, need to find N free frames and load program

• Set up a page table to translate logical to physical addresses

• Backing store likewise split into pages

• Still have Internal fragmentation

Address Translation Scheme

• Address generated by CPU is divided into:
• Page number (p) – used as an index into a page table which contains base

address of each page in physical memory

• Page offset (d) – combined with base address to define the physical memory
address that is sent to the memory unit

• For given logical address space 2m and page size 2n

page number page offset

p d

m -n n

Paging Hardware

Paging Model of Logical and Physical
Memory

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

Paging (Cont.)
• Calculating internal fragmentation

• Page size = 2,048 bytes
• Process size = 72,766 bytes
• 35 pages + 1,086 bytes
• Internal fragmentation of 2,048 - 1,086 = 962 bytes
• Worst case fragmentation = 1 frame – 1 byte
• On average fragmentation = 1 / 2 frame size
• So small frame sizes desirable?
• But each page table entry takes memory to track
• Page sizes growing over time

• Solaris supports two page sizes – 8 KB and 4 MB

• Process view and physical memory now very different

• By implementation process can only access its own memory

Free Frames

Before allocation After allocation

Implementation of Page Table
• Page table is kept in main memory

• Page-table base register (PTBR) points to the page table

• Page-table length register (PTLR) indicates size of the page table

• In this scheme every data/instruction access requires two memory
accesses

• One for the page table and one for the data / instruction

• The two memory access problem can be solved by the use of a special
fast-lookup hardware cache called associative memory or translation
look-aside buffers (TLBs)

Implementation of Page Table (Cont.)

• Some TLBs store address-space identifiers (ASIDs) in each TLB entry –
uniquely identifies each process to provide address-space protection
for that process

• Otherwise need to flush at every context switch

• TLBs typically small (64 to 1,024 entries)

• On a TLB miss, value is loaded into the TLB for faster access next time
• Replacement policies must be considered

• Some entries can be wired down for permanent fast access

