- 1. If $x + \log_{10}(1 + 2^x) = x \log_{10} 5 + \log_{10} 6$ then x is equal to (a) 2, -3(b) 2 only (c) 1 (d) 3 Solution: $x = \log_{10} 10^{x}$ $x + \log_{10}(1 + 2^{x}) = x \log_{10} 5 + \log_{10} 6$ $\log_{10} 10^{x} + \log_{10}(1+2^{x})$ $= \log_{10} 5^{x} + \log_{10} 6$ $\log_{10} 10^{x} (1+2^{x}) = \log_{10} 5^{x} \times 6$ $10^{x}(1+2^{x}) = 5^{x} \times 6$ $5^{x}{2^{x}(1+2^{x})-6} = 0$ $2^{x}(1+2^{x})-6=0$ (5^x \neq 0) Let $2^x = y$ $\mathbf{y}(1+\mathbf{y}) - \mathbf{6} = \mathbf{0}$ $y^2 + y - 6 = 0$ (y+3)(y-2) = 0y - 2 = 0 $2^{x} - 2 = 0$ x = 1Answer: (c) 2 The remainder and the quotient of the binary division $(101110)_2 \div (110)_2$ are respectively
 - (a) $(111)_2 + (100)_2$ (b) $(100)_2 + (111)_2$ (c) $(101)_2 + (101)_2$ (d) $(100)_2 + (100)_2$ **Solution:** $(101110)_2 = 1 \times 2^1 + 1 \times 2^2 + 1 \times 2^3 + 1 \times 2^5$ $(101110)_2 = 46$ $(110)_2 = 1 \times 2^1 + 1 \times 2^2 = 6$ $(101110)_2 \div (110)_2 = 46 \div 6$ Quotient = 7 = $(111)_2$ Remainder = 4 = $(100)_2$ **Answer:** (a)
- **3.** The matrix A has x rows and x + 5 columns. The matrix B has y rows and 11 – y columns.

Both AB and BA exist. What are the values of x and y respectively? (a) 8 and 3 (b) 3 and 4 (d) 8 and 8 (c) 3 and 8 Solution: Since AB and BA both exists. (1) .Column of A = Rows of B. x + 5 = y(2) Column of B = Rows of A. 11 - y = xSolve these two equations we get, x = 3 and y = 8Answer: (c) 4 If $S_n = nP + \frac{n(n-1)Q}{2}$, where S_n denotes the sum of the first n terms of an AP, then the common difference is (a) P + Q(b) 2P + 3Q(c) 2Q (d) Q Solution: Sum of nth term of an A.P. whose first term is a and common difference is d. $S_n = \frac{n}{2}(2a + (n-1)d)$ $nP + \frac{n(n-1)Q}{2} = \frac{n}{2}(2a + (n-1)d)$ $\frac{n}{2}(2P + (n-1)Q) = \frac{n}{2}(2a + (n-1)d)$

5. The roots of the equation (q - r)x² + (r - p)x + (p - q) = 0 are
(a) (r - p)/(q - r), 1/2
(b) (p - q)/(q - r), 1
(c) (q - r)/(p - q), 1

(d) (r - p)/(p - q), 1/2

a = P, d = Q

Answer: (d)

Solution:

 $(q - r)x^{2} + (r - p)x + (p - q) = 0$ Put x = 1 (q - r) + (r - p) + (p - q) = 0 So x =1 is a root. Product of roots

$$x_1 x_2 = \frac{p-q}{q-r}$$
$$x_2 = \frac{p-q}{q-r}$$

Answer: (b)

- 6. The sum of all real roots of the equation
 - $|x 3|^{2} + |x 3| 2 = 0$ is (a) 2 (b) 3 (c) 4 (d) 6 **Solution**: $|x - 3|^{2} + |x - 3| - 2 = 0$ Let y = |x - 3| $y^{2} + y - 2 = 0$ $y^{2} + 2y - y - 2 = 0$ (y + 2)(y - 1) = 0 y - 1 = 0 y = 1 |x - 3| = 1x = 2, 4

Sum of roots is equal to 6

Answer: (d)

7. If y = x + x² + x³ + ... up to infinite terms where x < 1, then which one of the following is correct?

(a)
$$x = \frac{y}{1+y}$$
 (b) $x = \frac{y}{1-y}$
(c) $x = \frac{1+y}{y}$ (d) $x = \frac{1-y}{y}$

Solution:

Series x, x^2 , x^3 are in G.P.

Summation of series =

$$\frac{a}{1-r}$$
$$y = \frac{x}{1-x}$$
$$y(1-x) = x$$
$$y - yx = x$$
$$x = \frac{y}{1+y}$$

Answer: (a)

8. If α and β are the roots of the equation 3x² + 2x + 1 = 0, then the equation whose roots are α + β⁻¹ and β + α⁻¹ is
(a) 3x² + 8x + 16 = 0

(b) $3x^2 - 8x - 16 = 0$ (c) $3x^2 + 8x - 16 = 0$

(d) $x^2 + 8x + 16 = 0$

Solution: Equation of quadratic equation is $x^2 - (sum of roots)x + product of roots = 0$

$$x^{2} - (\alpha + \beta^{-1} + \beta + \alpha^{-1})x + (\alpha + \beta^{-1}) \\ \times (\beta + \alpha^{-1}) = 0$$

If α and β are the roots of the equation $3x^2 + 2x + 1 = 0$ then $\alpha + \beta = -\frac{2}{3}$ and $\alpha\beta = \frac{1}{3}$

$$\alpha + \beta^{-1} + \beta + \alpha^{-1} = \alpha + \beta + \frac{\alpha + \beta}{\alpha\beta}$$
$$= -\frac{2}{3} + \frac{-\frac{2}{3}}{\frac{1}{3}} = -\frac{2}{3} - 2$$
$$= -\frac{8}{3}$$

$$(\alpha + \beta^{-1}) \times (\beta + \alpha^{-1}) = \frac{(\alpha\beta + 1)^2}{\alpha\beta}$$
$$= \frac{\left(\frac{1}{3} + 1\right)^2}{\frac{1}{3}} = \frac{\frac{16}{9}}{\frac{1}{3}} = \frac{16}{3}$$

$$x^{2} + \frac{8}{3}x + \frac{16}{3} = 0$$
$$3x^{2} + 8x + 16 = 0$$

Answer: (a)

9. The value of $\frac{1}{\log_3 e} + \frac{1}{\log_3 e^2} + \frac{1}{\log_3 e^4} + \dots$ up to infinite terms is

(a)
$$\log_{e} 9$$
 (b) 0

Solution: $\frac{1}{\log_3 e}, \frac{1}{\log_3 e^2}, \frac{1}{\log_3 e^4} + \dots$ it is G.P. series

First term
$$a = \frac{1}{\log_3 e}$$

Common ratio $r = \frac{Second term}{first term} = \frac{\frac{1}{\log_3 e^2}}{\frac{1}{\log_3 e}} = \frac{1}{2}$

Sum =
$$\frac{a}{1-r} = \frac{\frac{1}{\log_3 e}}{1-\frac{1}{2}} = \frac{2}{\log_3 e}$$

= $2\log_e 3 = \log_e 9$

Answer: (a)

- 10. If $\triangle PQR$, angle $R = \frac{\pi}{2}$ if $\tan\left(\frac{p}{2}\right)$ and $\tan\left(\frac{q}{2}\right)$ are the roots of the equation $ax^2 + bx + c = 0$, then which one of the following is correct? (a) a = b + c
 - (b) b = c + a
 (c) c = a + b
 (d) b = c

Solution:

If $\tan\left(\frac{P}{2}\right)$ and $\tan\left(\frac{Q}{2}\right)$ are the roots of the equation $ax^2 + bx + c = 0$ $\tan\left(\frac{P}{2}\right) + \tan\left(\frac{Q}{2}\right) = -\frac{b}{a}$ $\tan\left(\frac{P}{2}\right)\tan\left(\frac{Q}{2}\right) = \frac{c}{a}$ In \triangle PQR, $\angle P + \angle Q + \angle R = \pi$ Given $\angle R = \frac{\pi}{2}$ $\angle P + \angle Q = \frac{\pi}{2}$ $\frac{P}{2} + \frac{Q}{2} = \frac{\pi}{4}$ $\tan\left(\frac{P}{2} + \frac{Q}{2}\right) = \tan\frac{\pi}{4} = 1$ $\frac{\tan\left(\frac{P}{2}\right) + \tan\left(\frac{Q}{2}\right)}{1 - \tan\left(\frac{P}{2}\right)\tan\left(\frac{Q}{2}\right)} = 1$ $\tan\left(\frac{P}{2}\right) + \tan\left(\frac{Q}{2}\right) = 1 - \tan\left(\frac{P}{2}\right)\tan\left(\frac{Q}{2}\right)$ $-\frac{b}{a} = 1 - \frac{c}{a}$ -b = a - ca + b = cAnswer: (c) 11. If $\left|z - \frac{4}{z}\right| = 2$, then the maximum value of |z|

is equal to (a) $1 + \sqrt{3}$ (b) $1 + \sqrt{5}$ (c) $1 - \sqrt{5}$ (d) $\sqrt{5} - 1$ Solution: Let z = x + iy $z - \frac{4}{z} = x + iy - \frac{4}{x + iy} \times \frac{x - iy}{x - iy}$

$$= x + iy - \frac{4}{x^2 + y^2}(x - iy)$$

$$= x - \frac{4x}{x^2 + y^2} + i\left(y + \frac{4y}{x^2 + y^2}\right)$$

$$\left|z - \frac{4}{z}\right| = \sqrt{\left(x - \frac{4x}{x^2 + y^2}\right)^2 + \left(y + \frac{4y}{x^2 + y^2}\right)^2}$$

$$= \sqrt{x^2 + y^2 + \frac{16x^2}{(x^2 + y^2)^2} - \frac{8x}{x^2 + y^2} + \frac{8y^2}{x^2 + y^2} + \frac{16y^2}{(x^2 + y^2)^2}}$$

$$= \sqrt{x^2 + y^2 + \frac{16}{x^2 + y^2} + 8\frac{y^2 - x^2}{x^2 + y^2}} = 2$$

square both side we get

$$x^{2} + y^{2} + \frac{16}{x^{2} + y^{2}} + 8\frac{y^{2} - x^{2}}{x^{2} + y^{2}} = 4$$
$$(x^{2} + y^{2})^{2} + 8(y^{2} - x^{2}) - 4(x^{2} + y^{2}) + 16$$
$$= 0$$

12. The value of $\sqrt{3}$ cosec 20° – sec 20° is equal to

(a) 4	(b) 2
(c) 1	(d) -4

Solution:

$$\sqrt{3}\operatorname{cosec} 20^{0} - \sec 20^{0}$$

$$\frac{\sqrt{3}}{\sin 20^{0}} - \frac{1}{\cos 20^{0}}$$

$$\frac{\sqrt{3}\cos 20^{0} - \sin 20^{0}}{\sin 20^{0}\cos 20^{0}}$$

$$\frac{2\left(\frac{\sqrt{3}}{2}\cos 20^{0} - \frac{1}{2}\sin 20^{0}\right)}{\frac{\sin 40^{0}}{2}}$$

$$\frac{4(\sin 60^{0}\cos 20^{0} - \cos 60^{0}\sin 20^{0})}{\sin 40^{0}}$$

$$\frac{4\sin 40^{0}}{\sin 40^{0}} = 4$$
Answer: (a)

13. $\sqrt{1 + \sin A} = -\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right)$ is true if (a) $\frac{3\pi}{2} < A < \frac{5\pi}{2}$ only (b) $\frac{\pi}{2} < A < \frac{3\pi}{2}$ only (c) $\frac{3\pi}{2} < A < \frac{7\pi}{2}$ only (d) $0 < A < \frac{3\pi}{2}$ only Solution:

$$\sqrt{1+\sin A} = \sqrt{\sin^2 \frac{A}{2} + \cos^2 \frac{A}{2} + 2\sin \frac{A}{2}\cos \frac{A}{2}}$$
$$= \left|\sin\frac{A}{2} + \cos\frac{A}{2}\right|$$
$$if \left(\sin\frac{A}{2} + \cos\frac{A}{2}\right) < 0 \text{ then}$$
$$\left|\sin\frac{A}{2} + \cos\frac{A}{2}\right| = -\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right)$$
$$\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right) < 0$$
$$\sqrt{2}\sin\left(\frac{A}{2} + \frac{\pi}{4}\right) < 0$$
$$\pi < \left(\frac{A}{2} + \frac{\pi}{4}\right) < 2\pi$$
$$\frac{3\pi}{2} < A < \frac{7\pi}{2}$$

Answer: (c)

14. The principal value of $\sin^{-1} x$ lies in the interval

(a)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 (b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
(c) $\left[0, \frac{\pi}{2}\right]$ (d) $\left[0, \pi\right]$
Solution:

Solution:

$$y = \sin^{-1} x$$

Domain = (-1, 1)
Range = $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Answer: (b)

15. The points (a, b), (0, 0), (-a, -b) and (ab, b^2) are

- (a) the vertices of a parallelogram
- (b) the vertices of a rectangle
- (c) the vertices of a square
- (d) collinear

Solution:

Slope of line joining (a, b) and (0, 0)

$$= \frac{y_2 - y_1}{x_2 - x_1} = \frac{b - 0}{a - 0} = \frac{b}{a}$$

Slope of line joining (o, o) and (-a, -b)

$$=\frac{-b-0}{-a-0}=\frac{b}{a}$$

Slope of line joining (0, 0) and (ab, b^2)

$$=\frac{b^2}{ab}=\frac{b}{a}$$

Answer: (d)

- 16. The length of the normal form origin to the plane x + 2y - 2z = 9 is equal to
 - (a) 2 units (b) 3 units (c) 4 units (d) 5 units

Solution:

Equation of plane P: x + 2y - 2z = 9

Direction ratio of normal to the plane is

Equation of line passing through origin and perpendicular to plane P.

$$\frac{x}{1} = \frac{y}{2} = \frac{z}{-2} = k$$
$$x = k, y = 2k, z = -2k$$

Line passing through origin and perpendicular to plane P intersect at point Q. The coordinate of point Q satisfy the equation of the plane.

$$k + 4k + 4k = 9$$

$$k = 1$$

$$x = 1, x = 2, z = -2$$

$$OQ = \sqrt{1 + 2^2 + (-2)^2} = 3$$

Answer: (b)

17. If α , β and γ are the angles which the vector \overrightarrow{OP} (O being the origin) makes with positive direction of the coordinate axes, then which of the following are correct?

$$1.\cos^2\alpha + \cos^2\beta = \sin^2\gamma$$

$$2.\sin^2\alpha + \sin^2\beta = \cos^2\gamma$$

3. $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$

Select the correct answer using the code given below.

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

Solution: if 1, m and n are direction cosine of line.

$$l^{2} + m^{2} + n^{2} = 1$$
$$l = \cos \alpha$$
$$m = \cos \beta$$

$$n = \cos \gamma$$

$$\cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma = 1$$

$$\cos^{2} \alpha + \cos^{2} \beta + 1 - \sin^{2} \gamma = 1$$

$$\cos^{2} \alpha + \cos^{2} \beta = \sin^{2} \gamma$$

$$\cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma = 1$$

$$1 - \sin^{2} \alpha + 1 - \sin^{2} \beta + 1 - \sin^{2} \gamma = 1$$

$$2 = \sin^{2} \alpha + \sin^{2} \beta + \sin^{2} \gamma$$

$$1 + \cos^{2} \gamma = \sin^{2} \alpha + \sin^{2} \beta$$

- 18. The angle between the lines x + y − 3 = 0 and x − y + 3 = 0 is α and the acute angle between the lines x − √3y + 2√3 = 0 and √3x − y + 1 = 0 is β. Which one of the following is correct?
 - (a) $\alpha = \beta$ (b) $\alpha > \beta$ (c) $\alpha < \beta$ (d) $\alpha = 2\beta$

Solution:

Slope of line x + y - 3 = 0 is $m_1 = -1$

Slope of line x - y + 3 = 0 is $m_2 = 1$

Angle between two lines is

$$\tan \theta = \frac{\mathbf{m}_1 - \mathbf{m}_2}{1 + \mathbf{m}_1 \mathbf{m}_2}$$
$$\mathbf{m}_1 \mathbf{m}_2 = -1 \times 1 = -1$$

Lines are perpendicular to each other.

Slope of line $x - \sqrt{3}y + 2\sqrt{3} = 0$ is $m_1 = \frac{1}{\sqrt{3}}$ Slope of line $\sqrt{3}x - y + 1 = 0$ is $m_2 = \sqrt{3}$ Angle between two lines is $m_1 - m_2$

$$\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$$
$$\tan \theta = \left| \frac{\frac{1}{\sqrt{3}} - \sqrt{3}}{1 + \frac{1}{\sqrt{3}} \times \sqrt{3}} \right| = \frac{1}{\sqrt{3}}$$
$$\theta = 30^0$$

19. Let $\vec{\alpha} = \hat{i} + 2\hat{j} - \hat{k}$, $\vec{\beta} = 2\hat{i} - \hat{j} + 3\hat{k}$ and $\vec{\gamma} = 2\hat{i} + \hat{j} + 6\hat{k}$ be three vectors. If $\vec{\alpha}$ and $\vec{\beta}$ are both perpendicular to the vector $\vec{\delta}$ and $\vec{\delta}.\vec{\gamma} = 10$, then what is the magnitude of $\vec{\delta}$?

(a) $\sqrt{3}$ units (b) $2\sqrt{3}$ units

(c)
$$\frac{\sqrt{3}}{2}$$
 unit (d) $\frac{1}{\sqrt{3}}$ unit

Solution:

Let $\vec{\delta} = x\hat{i} + y\hat{j} + z\hat{k}$

Vector perpendicular to $\vec{\alpha}$ and $\vec{\beta}$

$$= \vec{\alpha} \times \vec{\beta} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 2 & -1 & 3 \end{vmatrix} = 5\hat{i} - 8\hat{j} - 5\hat{k}$$

Since $\vec{\delta}$ is perpendicular to $\vec{\alpha} \times \vec{\beta}$.

 $\vec{\delta} \cdot (\vec{\alpha} \times \vec{\beta}) = 0$ 5x - 8y - 5z = 0 $\vec{\delta} = k(\vec{\alpha} \times \vec{\beta}) = (5k)\hat{i} - (8k)\hat{j} - (5k)\hat{k}$ $\vec{\delta} \cdot \vec{\gamma} = 10$ $[(5k)\hat{i} - (8k)\hat{j} - (5k)\hat{k}] \cdot [2\hat{i} + \hat{j} + 6\hat{k}] = 10$ 10k - 8k - 30k = 10 -28k = 10 $|\vec{\delta}| = \sqrt{25k^2 + 64k^2 + 25k^2} = \sqrt{114}|k|$ $= \sqrt{114} \times \frac{10}{28}$

20 For any vector \vec{a}

```
|\vec{a} \times \hat{i}|^{2} + |\vec{a} \times \hat{j}|^{2} + |\vec{a} \times \hat{k}|^{2} \text{ is equal to}
(a) |\vec{a}|^{2} (b) 2|\vec{a}|^{2}

(c) 3|\vec{a}|^{2} (d) 4|\vec{a}|^{2}

Solution:

|\vec{a} \times \hat{i}| = |\vec{a}||\hat{i}| \sin \alpha = |\vec{a}| \sin \alpha
|\vec{a} \times \hat{j}| = |\vec{a}||\hat{j}| \sin \beta = |\vec{a}| \sin \beta
|\vec{a} \times \hat{k}| = |\vec{a}||\hat{k}| \sin \gamma = |\vec{a}| \sin \gamma
|\vec{a} \times \hat{i}|^{2} + |\vec{a} \times \hat{j}|^{2} + |\vec{a} \times \hat{k}|^{2}
= |\vec{a}|^{2} \{\sin^{2}\alpha + \sin^{2}\beta + \sin^{2}\beta\}
= |\vec{a}|^{2} \{3 - (\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma)\}
```

 $= |a| (3 - (\cos \alpha + \cos \beta + \cos \gamma)) = 1$ $= 2|\vec{a}|^2$ Answer: (b)

21. The distance of the point (1, 3) from the line 2x + 3y = 6, measured parallel to the line 4x + y = 4, is

(a)
$$\frac{5}{\sqrt{13}}$$
 units (b) $\frac{3}{\sqrt{13}}$ units

(c)
$$\sqrt{17}$$
 units (d) $\frac{\sqrt{17}}{2}$ units

Solution:

Equation of line parallel to the line 4x + y = 4and passing through point (1,3)

$$y - y_1 = m(x - x_1)$$

 $y - 3 = -4(x - 1)$
 $y = -4x + 7.$

Intersection of line y = -4x + 7 and 2x + 3y = 6 is (3/2, 1).

Distance between (3/2, 1) and (1, 3) is

$$\sqrt{\left(\frac{3}{2}-1\right)^2+(3-1)^2}=\frac{\sqrt{17}}{2}$$

Answer: (d)

- 22. The position of the point (1,2) relative to the ellipse $2x^2 + 7y^2 = 20$ is
 - (a) outside the ellipse
 - (b) inside the ellipse but not at the focus
 - (c) on the ellipse
 - (d) at the focus

Solution:

Equation of ellipse $2x^2 + 7y^2 = 20$.

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 > 0$ then point lies outside the ellipse

 $2 \times 1^2 + 7 \times 2^2 - 20 = 10 > 0$

So point (1, 2) lies outside the ellipse.

Answer: (a)

23. The equation of a straight line which cuts off an intercept of 5 units on negative direction of y-

axis and makes an angle 120^{0} with positive direction of x-axis is

(a)
$$y + \sqrt{3}x + 5 = 0$$

(b) $y - \sqrt{3}x + 5 = 0$
(c) $y + \sqrt{3}x - 5 = 0$
(d) $y - \sqrt{3}x - 5 = 0$

Solution:

Slope intercept form of equation of line

$$y = mx + c$$

m = slope of line

$$m = \tan \theta = \tan 120^{\circ} = -\cot 30^{\circ} = -\sqrt{3}$$

$$c = y - \text{intercept}$$

$$c = -5$$

$$y = -\sqrt{3}x - 5$$

$$y + \sqrt{3}x + 5 = 0$$

Answer: (a)

24. Equation of line passing through lines 2x - 3y + 7 = 0 and 7x + 4y + 2 = 0 is

$$(2x - 3y + 7) + \lambda(7x + 4y + 2) = 0$$

Point (2, 3) passes through line of intersection. So it must satisfy the equation.

$$(2 \times 2 - 3 \times 3 + 7) + \lambda(7 \times 2 + 4 \times 3 + 2)$$

= 0
$$2 + 28\lambda = 0$$

$$\lambda = -\frac{1}{14}$$

$$(2x - 3y + 7) - \frac{1}{14}(7x + 4y + 2) = 0$$

$$28x - 42y + 98 - 7x - 4y - 2 = 0$$

$$21x - 46y + 96 = 0$$

Answer: (b)

- **25** The equation of the circle which passes through the points (1, 0), (0, -6) and (3, 4) is
 - (a) $4x^2 + 4y^2 + 142x + 47y + 140 = 0$ (b) $4x^2 + 4y^2 - 142x - 47y + 138 = 0$ (c) $4x^2 + 4y^2 - 142x + 47y + 138 = 0$ (d) $4x^2 + 4y^2 + 150x - 49y + 138 = 0$ **Solution**: Centre of circle lies on point of intersection of line passing through perpendicular bisector of line joint AB and BC. A(1, 0), B(0, -6) and C(3, 4). Coordinate of midpoint of A(1, 0), B(0, -6)

 $\left(\frac{1+0}{2}, \frac{0-6}{2}\right) \equiv \left(\frac{1}{2}, -3\right)$

Slope of line AB

$$\frac{-6-0}{0-1} = 6$$

Equation of line passing through $\left(\frac{1}{2}, -3\right)$ and perpendicular to AB.

$$y + 3 = -\frac{1}{6}\left(x - \frac{1}{2}\right)$$

2x + 12y + 35 = 0

Coordinate of mid point A and C.

$$\left(\frac{x_A + x_c}{2}, \frac{y_A + y_c}{2}\right) \equiv \left(\frac{1+3}{2}, \frac{0+4}{2}\right) \equiv (2,2)$$

Slope of AC =

$$\frac{y_c - y_A}{x_c - x_A} = \frac{4 - 0}{3 - 1} = 2$$

Equation of line passing through (2, 2) and perpendicular to AC.

$$y - 2 = -\frac{1}{2}(x - 2)$$

x + 2y - 6 = 0

Intersection of line $L_1 2x + 12y + 35 = 0$

and
$$L_2: x + 2y - 6 = 0$$

 $y = -\frac{47}{8}, x = \frac{71}{4}$
Radius $= \sqrt{\left(\frac{71}{4} - 1\right)^2 + \left(-\frac{47}{8} - 0\right)^2}$
 $R = \sqrt{\left(\frac{67}{4}\right)^2 + \left(\frac{47}{8}\right)^2}$

Equation of circle:

 $(x - x_0)^2 + (y - y_0)^2 = R^2$

$$x^{2} + y^{2} - 2xx_{0} - 2yy_{0} + x_{0}^{2} + y_{0}^{2} - R^{2} = 0$$

$$x^{2} + y^{2} - 2x \times \frac{71}{4} + 2y \times \frac{47}{8} + \left(\frac{71}{4}\right)^{2} + \left(\frac{47}{8}\right)^{2} - \left(\frac{67}{4}\right)^{2} - \left(\frac{47}{8}\right)^{2} = 0$$

$$4x^{2} + 4y^{2} - 142x + 47y + \frac{(71 - 67)(71 + 67)}{4} = 0$$
$$4x^{2} + 4y^{2} - 142x + 47y + 138 = 0$$
Answer: (c)

26 A function is defined as follows:

$$f(x) = \begin{cases} -\frac{x}{\sqrt{x^2}}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

- (a) f(x) is continuous at x = 0 but not differentiableat x = 0
- (b) f(x) is continuous at x = 0 as well as differentiable at x = 0
- (c) f(x) is discontinuous at x = 0
- (d) None of the above

$$f(x) = \begin{cases} -\frac{x}{\sqrt{x^2}}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

$$\sqrt{x^2} = |x|$$

$$f(x) = \begin{cases} -\frac{x}{|x|}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

$$f(x) = \begin{cases} -\frac{x}{-x} = 1 & x < 0\\ -\frac{x}{x} = -1 & x > 0\\ 0, & x = 0 \end{cases}$$

So f(x) is discontinuous at x =0. Answer: (c)

27. if
$$y = \sec^{-1}\left(\frac{x+1}{x-1}\right) + \sin^{-1}\left(\frac{x-1}{x+1}\right)$$
, then $\frac{dy}{dx}$ is
equal to
(a) 0 (b) 1
(c) $\frac{x-1}{x+1}$ (d) $\frac{x+1}{x-1}$
Solution: Let $\sec^{-1}\left(\frac{x+1}{x-1}\right) = \theta$
 $\sec \theta = \frac{x+1}{x-1}$
 $\cos \theta = \frac{x-1}{x+1}$
 $\theta = \cos^{-1}\left(\frac{x-1}{x+1}\right)$
 $y = \cos^{-1}\left(\frac{x-1}{x+1}\right) + \sin^{-1}\left(\frac{x-1}{x+1}\right) = \frac{\pi}{2}$

28 Which one of the following is correct in respect of the derivative of the function, i.e. f'(x)?

 $\frac{dy}{dx} = 0$

- (a) f'(x) = 2x for $0 < x \le 1$
- (b) f'(x) = -2x for $0 < x \le 1$
- (c) f'(x) = -2x for 0 < x < 1
- (d) f'(x) = 0 for $0 < x < \infty$

Solution:

$$f'(x) = \begin{cases} -2x & \text{for } 0 < x < 1\\ \frac{1}{x} & \text{for } 1 < x \le 2\\ 0.5x & \text{for } 2 < x < \infty \end{cases}$$

At x = 1, Let hand derivative is not equal to right hand derivative. Therefore function f(x) is not differential at x = 1.

Answer: (c)

29. The maximum value of $\frac{\ln x}{x}$ is

(a) e

 $(b)\frac{1}{e}$

-

 $(c)\frac{2}{e}$

(d) 1

Solution:

$$y = \frac{\ln x}{x}$$

$$\frac{dy}{dx} = \frac{x \frac{d(\ln x)}{dx} - \ln x \frac{dx}{dx}}{x^2} = \frac{1 - \ln x}{x^2}$$

$$\frac{dy}{dx} = 0$$

$$\frac{1 - \ln x}{x^2} = 0$$

$$\ln x = 1$$

$$x = e$$

Maximum value is equal to $\frac{\ln}{e} = \frac{1}{e}$

Answer: (b)

- **30**. The function $f(x) = |x| x^3$ is
- (a) odd (b) even (c) both even and odd (d) neither even nor odd

Solution:

if f(x) = f(-x) then function is even.

if
$$f(x) = -f(-x)$$
 then function is odd.

$$f(x) = |x| - x^{3}$$
$$f(-x) = |-x| - (-x)^{3} = |x| + x^{3}$$

 $f(x) \neq f(-x)$ and $f(x) \neq -f(-x)$ So, function is neither odd and even.

Answer: (d)

31. What is

$$\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}} dx$$

equal to?

(a) 8	(b) 4
(c) 2	(d) 0

Solution:

$$1 + \sin\frac{x}{2} = \sin^2\frac{x}{4} + \cos^2\frac{x}{4} + 2\sin\frac{x}{4}\cos\frac{x}{4}$$

$$= \left(\sin\frac{x}{4} + \cos\frac{x}{4}\right)^{2}$$
$$\int_{0}^{2\pi} \sqrt{1 + \sin\frac{x}{2}} dx = \int_{0}^{2\pi} \left(\sin\frac{x}{4} + \cos\frac{x}{4}\right) dx$$
$$= \frac{-\cos\frac{x}{4}}{\frac{1}{4}} + \frac{\sin\frac{x}{4}}{\frac{1}{4}} \Big|_{0}^{2\pi} = 8$$

32. The area bounded by the curve |x| + |y| = 1 is

- (a) 1 square unit
- (b) $2\sqrt{2}$ square unit
- (c) 2 square unit
- (d) $2\sqrt{3}$ square unit

Solution:

The equation of curve represented by |x| + |y| = 1 is a square with vertex (1,0) (0,1) (-1, 0) and (0, -1).

Side of square = $\sqrt{1+1} = \sqrt{2}$

Area of square = $a^2 = 2$

Answer: (c)

33 Match List-I with List-II and select the correct answer using the code given below the lists:

List –I	List –II
(Function)	(Maximum value)
A. $\sin x + \cos x$	1.√10
B. $3\sin x + 4\cos x$	$2.\sqrt{2}$
C. $2\sin x + \cos x$	3.5
D. $\sin x + 3\cos x$	$4.\sqrt{5}$

Code:

(a) A	В	С	D
2	3	1	4
(b) A	В	С	D
2	3	4	1
(c) A	В	С	D
3	2	1	4
(d) A	В	С	D
3	2	4	1

Solution:

$$\sin x + \cos x = \sqrt{2} \sin(x + 45^{\circ})$$

$$3 \sin x + 4\cos x = 5 \left[\frac{3}{5}\sin x + \frac{4}{5}\cos x\right]$$

$$2 \sin x + \cos x = \sqrt{5} \left[\frac{2}{\sqrt{5}}\sin x + \frac{1}{\sqrt{5}}\cos x\right]$$

$$\sin x + 3\cos x = \sqrt{10} \left[\frac{1}{\sqrt{10}}\sin x + \frac{3}{\sqrt{10}}\cos x\right]$$

34. Geometrically $Re(z^2 - i) = 2$, where $i = \sqrt{-1}$ and Re is the real part, represents

(a) circle

(b) ellipse

(c) rectangular hyperbola

(d)parabola

Solution:

$$z = re^{i\theta}$$

$$z^{2} = e^{i2\theta}$$

$$z^{2} - i = r^{2}\cos 2\theta + i(r^{2}\sin 2\theta - 1)$$

$$Re(z^{2} - i) = r^{2}\cos 2\theta = 2$$

$$(x^{2} + y^{2})\cos 2\theta = 2$$

$$\tan \theta = \frac{y}{x}$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
$$= \frac{x^2}{x^2 + y^2} - \frac{y^2}{x^2 + y^2}$$
$$\cos 2\theta = \frac{x^2 - y^2}{x^2 + y^2}$$
$$(x^2 + y^2) \cos 2\theta = 2$$
$$x^2 - y^2 = 2$$

Equation represent is rectangular hyperbola.

Answer: (c)

35. A committee of two persons is selected from two men and two women. The probability that the committee will have exactly one woman is

(a) $\frac{1}{6}$ (b) $\frac{2}{3}$

(c)
$$\frac{1}{3}$$
 (d) $\frac{1}{2}$

Solution: Number of ways to selected two people = $C(4, 2) = \frac{4 \times 3}{2} = 6$

Number of ways such a way that exactly one woman = $C(2, 1) \times C(2, 1) = 4$

$$P(E) = \frac{4}{6} = \frac{2}{3}$$

36. Let a die be loaded in such a way that even faces are twice likely to occur as the odd faces. What is the probability that a prime number will show up when the die is tossed?

(a)
$$\frac{1}{3}$$
 (b) $\frac{2}{3}$

(c)
$$\frac{4}{9}$$
 (d) $\frac{5}{9}$

Solution : P(Even number) = 2 P(odd no)

$$P(Even) + P(0dd) = 1$$
$$3P(0dd) = 1$$
$$P(odd) = \frac{1}{3}$$
$$P(Even) = \frac{2}{3}$$

prime number are $\{1, 3, 5\}$

probability of odd = 1/3

37. For two events A and B, let $P(A) = \frac{1}{2}$, $P(A \cup A) = \frac{1}{2}$ B) = $\frac{2}{3}$ and $P(A \cap B) = \frac{1}{6}$. What is $P(\bar{A} \cap B)$ equal to?

(a)
$$\frac{1}{6}$$
 (b) $\frac{1}{4}$
(c) $\frac{1}{2}$ (d) $\frac{1}{2}$

(c)
$$\frac{1}{3}$$

Solution:

$$P(A \cup B) = P(A) + PB) - P(A \cap B)$$
$$\frac{2}{3} = \frac{1}{2} + P(B) - \frac{1}{6}$$
$$P(B) = \frac{1}{3}$$

$$P(\bar{A} \cap B) = P(B) - P(A \cap B) = \frac{1}{3} - \frac{1}{6} = \frac{1}{6}$$

Answer: (a)

38. Let A and B be two events with $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{6}$ and $P(A \cap B) = \frac{1}{12}$. What is $P(B|\overline{A})$ equal to ?

(a)
$$\frac{1}{5}$$
 (b) $\frac{1}{7}$
(c) $\frac{1}{8}$ (d) $\frac{1}{10}$

Solution: $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{6}$, $P(A \cap B) = \frac{1}{12}$

$$P(B|\bar{A}) = \frac{P(B \cap \bar{A})}{P(\bar{A})}$$
$$n(B \cap \bar{A}) = n(B) - n(A \cap B)$$
$$P(B \cap \bar{A}) = P(B) - P(A \cap B) = \frac{1}{6} - \frac{1}{12}$$
$$= \frac{1}{12}$$
$$P(B|\bar{A}) = \frac{P(B \cap \bar{A})}{P(\bar{A})}$$

$$P(B|\bar{A}) = \frac{\frac{1}{12}}{\frac{2}{3}} = \frac{1}{8}$$

Answer: (c)

39. If x_1 and x_2 are positive quantities, then the condition for the difference between the arithmetic mean and the geometric mean to be greater than 1 is

(a)
$$x_1 + x_2 > 2\sqrt{x_1x_2}$$

(b) $\sqrt{x_1} + \sqrt{x_2} > \sqrt{2}$
(c) $|\sqrt{x_1} - \sqrt{x_2}| > \sqrt{2}$
(d) $x_1 + x_2 < 2(\sqrt{x_1x_2} + 1)$

Solution:

$$A.M. = \frac{x_1 + x_2}{2}$$

ER RANBIR MUKHYA

NDA-2 **2017**

$$G.M. = \sqrt{x_1 x_2}$$

$$A.M. - G.M. > 1$$

$$\frac{x_1 + x_2}{2} - \sqrt{x_1 x_2} > 1$$

$$\frac{x_1 + x_2 - 2\sqrt{x_1 x_2}}{2} > 1$$

$$|\sqrt{x_1} - \sqrt{x_2}|^2 > 2$$

$$|\sqrt{x_1} - \sqrt{x_2}| > \sqrt{2}$$

Answer: (c)

40. Five sticks of length 1, 3, 5, 7 and 9 feet are given. Three of these sticks are selected at random. What is the probability that the selected sticks can form a triangle?

(a) 0.5	(b) 0.4
---------	---------

(c)
$$0.3$$
 (d) 0

Solution: Total number of ways = C(5, 3)

= 10

To form a triangle then sides obey this two rule.

- (1) Sum of any two side is always greater than third side.
- (2) Difference any any two side is always less than third side.
- Sample space S = {(1, 3, 5), (1,3,7), (1,3,9), (3,5,7), (1, 5, 7), (1, 5, 9), (3,5,9), (3,7,9), (5,7,9)}
- To form a triangle (3, 5, 7) and (5, 7, 9) need to selected.

$$P(E) = \frac{n(E)}{n(S)} = \frac{2}{10}$$

Answer: (a)

41. If $A = \{x: x \text{ is a multiple of } 2\},\$

 $B = \{x: x \text{ is a multiple of 5} \}$ and $C = \{x: x \text{ is a muliple of 10,} \}$

$$\mathcal{L} = \left\{ \begin{array}{c} 1 & 1 & 0 \\ 1 & 1 & 0 \\ \end{array} \right\}$$

then $A \cap (B \cap C)$ is equal to

- (b) B
- (c) C
- (d) $\left\{ x: x \text{ is a muliple of } 100, \right\}$

Solution:
$$A = \{x: x \text{ is a multiple of } 2\}$$

$$A = \{2, 4, 6, 8, \dots \}$$

$$B = \{x: x \text{ is a multiple of 5}\}$$

$$B = \{5, 10, 15, 20, \dots\}$$

$$C = \{x: x \text{ is a multiple of 10}, \}$$

$$C = \{10, 20, 30, 40\}$$

$$B \cap C = \{10, 20, 30, 40 \dots\}$$

$$A \cap (B \cap C) = \{\{10, 20, 30, 40 \dots\}\}$$

$$A \cap (B \cap C) = C$$

42. if α and β are the roots of the equation $1 + x + x^2 = 0$, then the matrix product

$$\begin{bmatrix} 1 & \beta \\ \alpha & \alpha \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ 1 & \beta \end{bmatrix}$$

is equal to

$$\begin{array}{c} (a) \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \\ (b) \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix} \\ (c) \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \\ (d) \begin{bmatrix} -1 & -1 \\ -1 & -2 \end{bmatrix}$$

equation $1 + x + x^2 = 0$ then

Solution: if α and β are the roots of the

$$1 + \alpha + \alpha^{2} = 0$$

$$1 + \beta + \beta^{2} = 0$$

$$\alpha + \beta = -\frac{b}{a} = -1$$

$$\alpha\beta = \frac{c}{a} = 1$$

$$1 \quad \beta \\ 1 \quad \beta \\ 1 \quad \beta \end{bmatrix} = \begin{bmatrix} \alpha + \beta & \beta + \beta \\ \alpha^{2} + \alpha & 2\alpha\beta \end{bmatrix}$$

$$= \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix}$$

42. If |a| denotes the absolute value of an integer, then which of the following are correct?

2.
$$|a + b| \le |a| + |b|$$

3.
$$|a - b| \ge ||a| - |b||$$

Select the correct answer using the code given below.

(a) 1 and 2 only

(b) 2 and 3 only

- (c) 1 and 3 only
- (d) 1, 2 and 3
- Answer: (d)

43. How many different permutations can be made out of the letters of the word 'PERMUTATION'?

(b)19954800

(c) 19952400 (d) 39916800

Solution:

Number of letter in word PERMUTATION is 11.

T is repeated two times

Number of ways to arrange this letter

$= \frac{n!}{p!} = \frac{11!}{2!} = 19958400$
44 . If $A = \begin{bmatrix} 4i - 6 & 10i \\ 14i & 6 + 4i \end{bmatrix}$ and $k = \frac{1}{2i}$, where
$i = \sqrt{-1}$, then kA is equal to
(a) $\begin{bmatrix} 2+3i & 5\\ 7 & 2-3i \end{bmatrix}$
(b) $\begin{bmatrix} 2 - 3i & 5 \\ 7 & 2 + 3i \end{bmatrix}$
(c) $\begin{bmatrix} 2-3i & 7\\ 5 & 2+3i \end{bmatrix}$
(d) $\begin{bmatrix} 2+3i & 5\\ 7 & 2+3i \end{bmatrix}$
Solution : A = $\begin{bmatrix} 4i - 6 & 10i \\ 14i & 6 + 4i \end{bmatrix}$ and k = $\frac{1}{2i}$
$kA = \frac{1}{2i} \begin{bmatrix} 4i - 6 & 10i \\ 14i & 6 + 4i \end{bmatrix}$
$kA = \begin{bmatrix} \frac{4i - 6}{2i} & \frac{10i}{2i} \\ \frac{14i}{2i} & \frac{6 + 4i}{2i} \end{bmatrix}$
$\frac{4i-6}{2i} = \frac{-3+2i}{i} = \frac{-3+2i}{i} \times \frac{i}{i} = \frac{2i^2-3i}{i^2}$
$= \frac{-2-3i}{-1} = 2+3i$
$\frac{6+4i}{2i} = \frac{3+2i}{i} \times \frac{i}{i} = \frac{3i+2i^2}{i^2} = \frac{-2+3i}{-1}$
= 2 - 3i
$kA = \begin{bmatrix} 2+3i & 5\\ 7 & 2-3i \end{bmatrix}$

45. It is given that the roots of the equation $x^2 - 4x - \log_3 P = 0$ are real. For this, the minimum value of P is

(a) $\frac{1}{27}$ (b) $\frac{1}{64}$

(c)
$$\frac{1}{81}$$
 (d) 1

Solution: the roots of the equation

 $x^{2} - 4x - \log_{3} P = 0$ are real.

If discriminate of quadratic equation is greater than zero then roots are real.

$$b^2 - 4ac \ge 0$$

a = 1, b = - 4 and c = $-\log_3 P$
 $16 + 4\log_3 P \ge 0$

 $\log_3 P \ge -4$ $\log_3 P \ge \log_3 3^{-4}$

Since base 3 is greater than 1 therefore

$$P \ge 3^{-4}$$
$$P \ge \frac{1}{81}$$

Minimum value of P is 1/81.

46. The value of the product $6^{\frac{1}{2}} \times 6^{\frac{1}{4}} \times 6^{\frac{1}{8}} \times$ $6^{\frac{1}{16}} \times \dots$ up to infinite terms is

•	
(a) 6	(b) 36
(c) 216	(d) 512

Solution:

$$6^{\frac{1}{2}} \times 6^{\frac{1}{4}} \times 6^{\frac{1}{8}} \times 6^{\frac{1}{16}} \times \dots = 6^{\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots\right)}$$
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = \frac{a}{1-r} = \frac{\frac{1}{2}}{1-\frac{1}{2}} = 1$$
$$6^{\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots\right)} = 6$$

47. The value of the determinant

	$\cos^2 \frac{\theta}{2}$ $\sin^2 \frac{\theta}{2}$	$\frac{\sin^2 \frac{\theta}{2}}{\cos^2 \frac{\theta}{2}}$
for all values	of θ , is	
(a) 1		(b) cos θ
(c) sin θ		(d) cos 20

Solution:
$$\begin{vmatrix} \cos^2 \frac{\theta}{2} & \sin^2 \frac{\theta}{2} \\ \sin^2 \frac{\theta}{2} & \cos^2 \frac{\theta}{2} \end{vmatrix} = \cos^4 \frac{\theta}{2} - \sin^4 \frac{\theta}{2} \\ = \left(\cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2} \right) \left(\cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2} \right) \\ = \cos \theta$$

48. The number of terms in the expansion of $(x + a)^{100} + (x - a)^{100}$ after simplification is

Solution:

$$(\mathbf{x} + \mathbf{y})^{\mathbf{n}} = \sum_{r=0}^{n} n_{\mathcal{C}_r} \mathbf{x}^r \mathbf{y}^{n-r}$$

Number of term is n+1.

$$(\mathbf{x} + \mathbf{a})^{100} = n_{c_0} a^{100} + n_{c_1} a^{99} x$$
$$+ n_{c_2} a^{99} x^2 + ..$$
$$(\mathbf{x} - \mathbf{a})^{100} = n_{c_0} a^{100} - n_{c_1} a^{99} x$$
$$+ n_{c_2} a^{99} x^2 - ..$$
$$(\mathbf{x} + \mathbf{a})^{100} + (\mathbf{x} - \mathbf{a})^{100}$$
$$= 2(n_{c_0} a^{100} + n_{c_2} a^{98})$$

$$+ n_{C_4} a^{96} + \ldots + n_{C_n} a^{100}$$

where n = 100

49. In the expansion of $(1 + x)^{50}$, the sum of the coefficients of odd powers of x is

(a) 2 ²⁶	(b) 2 ⁴⁹
(c) 2 ⁵⁰	(d) 2 ⁵¹

Solution:

$$(1 + x)^{50} = C(50, 0) + C(50, 1)x +$$

$$C(50, 2)x^{2} + C(50, 3)x^{3} + C(50, 4)x^{4}$$

$$(1 - x)^{50} = C(50, 0) - C(50, 1)x +$$

$$+ C(50, 2)x^{2} - C(50, 3)x^{3} +$$

$$+ C(50, 4)x^{4}$$

$$(1 + x)^{50} - (1 - x)^{50} =$$

$$= 2(C(50, 1)x + C(50, 3)x^{3} +$$

$$+ C(50, 5)x^{5})$$

put x =1

$$2^{50} = 2(C(50, 1) + C(50, 3) + +C(50, 5) + \cdots.)$$

$$(C(50,1) + C(50,3) + +C(50,5) + \dots)$$

= 2⁴⁹

50. The smallest positive integer n for which $\left(\frac{1+i}{1-i}\right)^n = 1$, is (a) 1 (b) 4

(c) 8 (d) 16

Solution:

$$1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$$

$$1 - i = \sqrt{2}e^{-i\frac{\pi}{4}}$$

$$\left(\frac{1+i}{1-i}\right) = e^{i\frac{\pi}{2}}$$

$$\left(\frac{1+i}{1-i}\right)^n = e^{i\frac{n\pi}{2}} = \cos\frac{n\pi}{2} + i\sin\frac{n\pi}{2}$$
if n = 1 $\left(\frac{1+i}{1-i}\right)^n = i$
if n = 4 $\left(\frac{1+i}{1-i}\right)^n = \cos 2\pi + i\sin 2\pi = 1$

- **51**. A **man** running round a racecourse notes that the sum of the distances of two flagposts from him is always 10 m and the distance between the flag-posts is 8 m. The area of the path he encloses is
 - (a) 18π square meters
 - (b) 15π square meters
 - (c) 12π square meters
 - (d) 8π square meters

Solution: If a man running a racecourse notes that sum of the distances of two flagposts from him is always 10m then equation of path of a man is ellipse. Flagposts are foci of the ellipse.

Distance between foci = 2ae = 8m

2a = 10

$$e = \frac{8}{10} = \frac{4}{5}$$

 $b^2 = a^2(1 - e^2) = 5^2 \left(1 - \frac{16}{25}\right)$
 $b = 3$
 $a = 5$

Area of the ellipse = $\pi ab = 15\pi$

52. The equation of the ellipse whose centre is at origin, major axis is along x-axis with eccentricity $\frac{3}{4}$ and latus rectum 4 units is

(a)
$$\frac{x^2}{1024} + \frac{7y^2}{64} = 1$$

(b) $\frac{49x^2}{1024} + \frac{7y^2}{64} = 1$
(c) $\frac{7x^2}{1024} + \frac{49y^2}{64} = 1$

(d)
$$\frac{x^2}{1024} + \frac{y^2}{64} = 1$$

Solution:

Equation of ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Latus rectum of ellipse is a straight line passing through the foci of ellipse and perpendicular to the major axis of ellipse

x-coordinate of focus = ae

$$\frac{(ae)^2}{a^2} + \frac{y^2}{b^2} = 1$$
$$y = b\sqrt{1 - e^2}$$

Length of latus rectum = $2y = 2b\sqrt{1-e^2}$

$$2b\sqrt{1-e^2} = 4$$

eccentricity $e = \frac{3}{4}$

$$2b\sqrt{1-\frac{9}{16}} = 4$$
$$b = \frac{8}{\sqrt{7}}$$
$$b^2 = a^2(1-e^2)$$

$$a^{2} = \frac{64}{7\left(1 - \frac{9}{16}\right)} = \frac{64 \times 16}{7 \times 7} = \frac{1024}{49}$$

Equation of ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
$$\frac{49x^2}{1024} + \frac{7y^2}{64} = 1$$

53. The equation of the plane passing the planes x + y + z = 1, 2x + 3y + 4z = 7, and perpendicular to the plane x - 5y + 3z = 5 is given by

(a)
$$x + 2y + 3z - 6 = 0$$

(b) $x + 2y + 3z + 6 = 0$
(c) $3x + 4y + 5z - 8 = 0$

(d)
$$3x + 4y + 5z + 8 = 0$$

Solution: Equation of plane passing through point of intersection of Plane P_1 and Plane P_2

$$P \equiv P_1 + \lambda P_2 = 0$$

x + y + z - 1 + $\lambda(2x + 3y + 4z - 7) = 0$
(1 + 2 λ)x + (1 + 3 λ)y + (1 + 4 λ)z - 1 - 7 $\lambda = 0$

If two plane are perpendicular to each other then dot product of direction ratio of normal is equal to zero.

Direction ratio of normal of plane P

$$(1+2\lambda,1+3\lambda,1+4\lambda)$$

Direction ratio of normal of plane x - 5y + 3z = 5

$$a_{1}a_{2} + b_{1}b_{2} + c_{1}c_{2} = 0$$

$$(1 + 2\lambda) \times 1 + (1 + 3\lambda) \times (-5) + (1 + 4\lambda)$$

$$\times 3 = 0$$

$$1 + 2\lambda - 5 - 15\lambda + 3 + 12\lambda = 0$$

$$-1 - \lambda = 0$$

$$\lambda = -1$$

Equation of plane

ER RANBIR MUKHYA

(1-2)x + (1-3)y + (1-4)z - 1 + 7 = 0x + 2y + 3z - 6 = 0

54. Consider the following:

1. $x + x^2$ is continuous at x = 0

2. $x + \cos{\frac{1}{x}}$ is discontinuous at x =0

3. $x^2 + \cos \frac{1}{x}$ is continuous at x =0

Which of the above are correct?

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

Solution: Function f(x) = x and $g(x) = x^2$ are continuous function.

h(x) = f(x) + g(x) is also continuous function.

Function $f(x) = \cos \frac{1}{x}$ at x = 0 function is discontinuous function.

So $f(x) = x + \cos \frac{1}{x}$ is discontinuous at x =0 is discontinuous function.

- **55.** If x is any real number, then $\frac{x^2}{1+x^4}$ belongs to which one of the following intervals?
 - (a) (0, 1)
 - (b) $(0, \frac{1}{2}]$
 - (c) $(0, \frac{1}{2})$
 - (d) [0, 1]

Solution:

$$y = \frac{x^2}{1+x^4}$$
$$y = \frac{1}{x^2 + \frac{1}{x^2}}$$

y is maximum when $x^2 + \frac{1}{x^2}$ is minimum.

Minimum value of $x^2 + \frac{1}{x^2}$ is 2

Range of $y(0,\frac{1}{2}]$

56. What is the distance between the straight lines 3x + 4y = 9 and 6x + 8y = 15?

Solution:

Lines 3x + 4y = 9 and 6x + 8y = 15 are parallel to each other.

distance between parallel line

$$= \frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}} = \frac{|-9 + 7.5|}{\sqrt{3^2 + 4^2}} = \frac{1.5}{5} = \frac{3}{10}$$

57. If \vec{a} and \vec{b} are vectors such that $|\vec{a}| =$

2, $|\vec{b}| = 7$ and $\vec{a} \times \vec{b} = 3\hat{\imath} + 2\hat{\jmath} + 6\hat{k}$, then

what is the acute angle between \vec{a} and \vec{b} ?

(a)
$$30^{\circ}$$
 (b) 45°
(c) 60° (d) 90°

Solution: $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$

$$|\vec{a} \times \vec{b}| = \sqrt{3^2 + 2^2 + 6^2} = \sqrt{9 + 4 + 36} = 7$$
$$|\vec{a}||\vec{b}|\sin\theta = 7$$
$$\sin\theta = \frac{7}{2 \times 7} = \frac{1}{2}$$

Acute angle between \vec{a} and \vec{b} are vectors is 30° .