1. How many four-digit natural numbers are there such that all of the digits are odd?
(a) 625
(b) 400
(c) 196
(d) 120

Solution: Odd number from 0 to 9 are 1, 3,
$5,7,9$. Total number of numbers are 5.
Number of ways to formed four-digit natural numbers such that all of the digits are odd
$=5 \times 4 \times 3 \times 2=120$
2. What is $\sum_{r=0}^{r=n} 2^{r} C(n, r)$ equal to?
(a) 2^{n}
(b) 3^{n}
(c) $2^{2 n}$
(d) $3^{2 n}$

Solution: $(1+x)^{n}=\sum_{r=0}^{r=n} x^{r} C(n, r)$
put $\mathrm{x}=2$ we get $(1+2)^{n}=\sum_{r=0}^{r=n} 2^{r} C(n, r)$
$\sum_{r=0}^{r=n} 2^{r} C(n, r)=3^{n}$
Answer: (b)
3. If different permutations of the letters of the word 'MATHEMATICS' are listed as in a dictionary, how many words (with or without meaning) are there in the list before the first word that starts with C ?
(a) 302400
(b) 403600
(c) 907200
(d) 1814400

Solution: Set of letters in the word MATHEMATICS

$$
\{A, A, C, E, H, I, M, M, S, T, T\}
$$

Word begin with letter $A=\frac{10!}{2!2!}=907200$
Answer: (c)
4. For how many quadratic equations, the sum of roots is equal to the product of roots?
(a) 0
(b) 1
(b) 2
(d) Infinitely many

Solution:

$$
a x^{2}+b x+c=0
$$

Let α and β are roots of the quadratic equation.

$$
\begin{aligned}
\alpha+\beta & =-\frac{b}{a} \\
\alpha \beta & =\frac{c}{a} \\
\alpha+\beta & =\alpha \beta \\
-\frac{b}{a} & =\frac{c}{a} \\
\frac{b+c}{a} & =0 \\
b+c & =0
\end{aligned}
$$

Number of quadratic equation is equal to infinity.
5. Consider the following statements:

1. The set of all irrational numbers between $\sqrt{2}$ and $\sqrt{5}$ is an infinite set.
2. The set of all odd integers less than 100 is a finite set.

Which of the statements given above is/are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2

Solution:

The set of all odd integers less than 100 is a finite set.

Set $A=\{-\infty, \quad-2,-1,0,1,2,3, \ldots, 99\}$
Number of element in set A is infinity
6. Let $\mathrm{p}, \mathrm{q}(\mathrm{p}>\mathrm{q})$ be the roots of the quadratic equation $x^{2}+b x+c=0$ where $c>0$. If $p^{2}+q^{2}-11 p q=0$, then what is $p-q$ equal to ?
(a) $3 \sqrt{c}$
(b) $3 c$
(c) $9 \sqrt{c}$
(d) 90

Solution:

if p, q are the roots of the quadratic
equation $x^{2}+b x+c=0$
$p+q=-b$
$p q=c$
$p^{2}+q^{2}-11 p q=0$
$(p-q)^{2}-9 p q=0$
$p-q=3 \sqrt{p q}$
$=3 \sqrt{c}$
Answer: (a)
7. What is the diameter of a circle inscribed in a regular polygon of 12 sides, each of length 1 cm ?
(a) $1+\sqrt{2} \mathrm{~cm}$
(b) $2+\sqrt{2} \mathrm{~cm}$
(c) $2+\sqrt{3} \mathrm{~cm}$
(d) $3+\sqrt{3} \mathrm{~cm}$

Solution:

$$
\begin{gathered}
\tan 15^{0}=\frac{1 / 2}{r} \\
\tan 15^{0}=\tan \left(45^{0}-30^{\circ}\right) \\
=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}} \\
=\frac{\sqrt{3}-1}{\sqrt{3}+1} \\
2 r=\frac{1}{\tan 15^{0}=\frac{1}{2 r}} \\
=\frac{3+1+2 \sqrt{3}+1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\
=2+1
\end{gathered}
$$

Consider the following for the next three (03) items that follow:

$$
\text { Let } z=\frac{1+i \operatorname{si}}{1-i \sin \theta} \text { where } i=\sqrt{-1}
$$

8 What is the modulus of z ?
(a) 1
(b) $\sqrt{2}$
(c) $1+\sin ^{2} \theta$
(d) $\frac{1+\sin ^{2} \theta}{1-\sin ^{2} \theta}$

Solution:

$z=\frac{1+i \sin \theta}{1-i \sin \theta}$
$|z|=\frac{|1+i \sin \theta|}{|1-i \sin \theta|}$
$|z|=\frac{\sqrt{1+\sin ^{2} \theta}}{\sqrt{1+(-\sin)^{2} \theta}}=1$
Answer: (a)
9. What is angle θ such that z is purely real?
(a) $\frac{n \pi}{2}$
(b) $\frac{(2 n+1) \pi}{2}$
(c) $n \pi$
(d) $2 n \pi$ only

Where n is an integer

Solution:

$$
\begin{gathered}
z=\frac{1+i \sin \theta}{1-i \sin \theta} \\
z=\frac{1+i \sin \theta}{1-i \sin \theta} \times \frac{1+i \sin \theta}{1+i \sin \theta} \\
z=\frac{1-\sin ^{2} \theta+2 i \sin \theta}{1+\sin ^{2} \theta} \\
z=\frac{1-\sin ^{2} \theta}{1+\sin ^{2} \theta}+2 i \frac{\sin \theta}{1+\sin ^{2} \theta}
\end{gathered}
$$

z is purely real then imaginary part is equal to zero.

$$
\begin{gathered}
\frac{2 \sin \theta}{1+\sin ^{2} \theta}=0 \\
\sin \theta=0 \\
\theta=n \pi
\end{gathered}
$$

10. What is angle θ such that z is purely imaginary?
(a) $\frac{n \pi}{2}$
(b) $\frac{(2 n+1) \pi}{2}$
(c) $n \pi$
(d) $2 n \pi$

Where n is an integer

Solution:

$$
z=\frac{1-\sin ^{2} \theta}{1+\sin ^{2} \theta}+2 i \frac{\sin \theta}{1+\sin ^{2} \theta}
$$

z is purely imaginary then real part is equal to zero.

$$
\begin{aligned}
& \frac{1-\sin ^{2} \theta}{1+\sin ^{2} \theta}=0 \\
& 1-\sin ^{2} \theta=0 \\
& \sin ^{2} \theta=1 \\
& \theta=\frac{(2 n+1) \pi}{2}
\end{aligned}
$$

Consider the following for the next three (03) items that follow:

Let P be the sum of first n positive terms of an increasing arithmetic progression A. Let Q be the sum of first n positive terms of another increasing arithmetic progression
B. Let $P: Q=(5 n+4):(9 n+6)$
11. What is the ratio of the first term of A to that of B ?
(a) $1 / 3$
(b) $2 / 5$
(c) $3 / 4$
(d) $3 / 5$

Solution:

$$
\begin{gathered}
P=a_{1}+(n-1) d_{1} \\
Q=a_{2}+(n-1) d_{2} \\
\frac{P}{Q}=\frac{5 n+4}{9 n+6} \\
\frac{a_{1}-d_{1}+n d_{1}}{a_{2}-d_{2}+n d_{2}}=\frac{5 n+4}{9 n+6}
\end{gathered}
$$

$a_{1}-d_{1}=4$ and $d_{1}=5$
$a_{2}-d_{2}=6$ and $d_{2}=9$
$a_{1}=9$ and $a_{2}=15$
$\frac{a_{1}}{a_{2}}=\frac{9}{15}=\frac{3}{5}$
12. What is the ratio of their $10^{\text {th }}$ terms?
(a) $11 / 29$
(b) $22 / 49$
(c) $33 / 59$
(d) $44 / 69$

Solution:

$\frac{a_{10}}{a_{10}^{\prime}}=\frac{a_{1}+(10-1) d_{1}}{a_{2}+(10-1) d_{2}}=\frac{9+9 \times 5}{15+9 \times 9}=\frac{54}{96}$
Answer: (*)
13. if d is the common difference of A, and D is the common difference of B, then which one of the following is always correct?
(a) $D>d$
(b) $D<d$
(c) $7 D>12 d$
(d) None of the above

Solution: $d=d_{1}=5$

$$
\begin{aligned}
& D=d_{2}=9 \\
& D>d
\end{aligned}
$$

Answer: (a)
Consider the following for the next three (03) items that follow:

Consider the binomial expansion of $(p+q x)^{9}$:
14. What is the value of q if the coefficients of x^{3} and x^{6} are equal?
(a) p
(b) $9 p$
(c) $\frac{1}{p}$
(d) p^{2}

Solution:

$$
(x+y)^{n}=\sum C(n, r) x^{r} y^{n-r}
$$

Coefficient of $\mathrm{x}^{6}=\mathrm{C}(9,3) p^{3} q^{6}$
Coefficient of $\mathrm{x}^{3}=\mathrm{C}(9,6) p^{6} q^{3}$
Coefficient of $x^{6}=$ Coefficient of x^{3}
$C(9,3) p^{3} q^{6}=C(9,6) p^{6} q^{3}$
$q^{3}=p^{3}$
$p=q$
Answer: (a)
15. What is the ratio of the coefficients of middle terms in the expansion (when expanded in ascending powers of x) ?
(a) pq
(b) p / q
(c) $4 p / 5 q$
(d) $1 /(\mathrm{pq})$

Solution: Number of terms in $(p+q x)^{9}$ is 10.

Middle terms are fifth and sixth terms.
Coefficient of fifth term $=C(9,4) p^{4} q^{5}$
Coefficient of sixth term $=C(9,5) p^{5} q^{4}$
$\frac{\text { Coefficient of fifth term }}{\text { Coefficient of sixth term }}=\frac{C(9,4) p^{4} q^{5}}{C(9,5) p^{5} q^{4}}=\frac{q}{p}$
Answer: (*)
Consider the following for the next three (03) items that follow:

Let $\quad A=\left(\begin{array}{ccc}0 & \sin ^{2} \theta & \cos ^{2} \theta \\ \cos ^{2} \theta & 0 & \sin ^{2} \theta \\ \sin ^{2} \theta & \cos ^{2} \theta & 0\end{array}\right) \quad$ and
$A=P+Q$ where P is symmetric matrix and Q is skew-symmetric matrix.
16. What is P equal to ?
(a) $\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right)$
(b) $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$
(c) $\quad \cos 2 \theta\left(\begin{array}{ccc}0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0\end{array}\right)$
(d) $\quad \cos 2 \theta\left(\begin{array}{ccc}0 & -1 / 2 & 1 / 2 \\ 1 / 2 & 0 & -1 / 2 \\ -1 / 2 & 1 / 2 & 0\end{array}\right)$
17. What is Q equal to ?
(a) $\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right)$
(b) $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$
(c) $\quad \cos 2 \theta\left(\begin{array}{ccc}0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0\end{array}\right)$
(d) $\quad \cos 2 \theta\left(\begin{array}{ccc}0 & -1 / 2 & 1 / 2 \\ 1 / 2 & 0 & -1 / 2 \\ -1 / 2 & 1 / 2 & 0\end{array}\right)$

Solution: Any matrix can be written as sum of symmetric matrix and skew symmetric matrix.

$$
\begin{gathered}
A=\frac{A+A^{T}}{2}+\frac{A-A^{T}}{2} \\
A=\left(\begin{array}{ccc}
0 & \sin ^{2} \theta & \cos ^{2} \theta \\
\cos ^{2} \theta & 0 & \sin ^{2} \theta \\
\sin ^{2} \theta & \cos ^{2} \theta & 0
\end{array}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{A+A^{T}}{2} \\
& =\frac{1}{2}\left(\begin{array}{ccc}
0 & \sin ^{2} \theta & \cos ^{2} \theta \\
\cos ^{2} \theta & 0 & \sin ^{2} \theta \\
\sin ^{2} \theta & \cos ^{2} \theta & 0
\end{array}\right) \\
& +\frac{1}{2}\left(\begin{array}{ccc}
0 & \cos ^{2} \theta & \sin ^{2} \theta \\
\sin ^{2} \theta & 0 & \cos ^{2} \theta \\
\cos ^{2} \theta & \sin ^{2} \theta & 0
\end{array}\right) \\
& \frac{A+A^{T}}{2}=\frac{1}{2}\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \\
& \frac{A-A^{T}}{2} \\
& =\frac{1}{2}\left(\begin{array}{ccc}
0 & \sin ^{2} \theta & \cos ^{2} \theta \\
\cos ^{2} \theta & 0 & \sin ^{2} \theta \\
\sin ^{2} \theta & \cos ^{2} \theta & 0
\end{array}\right) \\
& -\frac{1}{2}\left(\begin{array}{ccc}
0 & \cos ^{2} \theta & \sin ^{2} \theta \\
\sin ^{2} \theta & 0 & \cos ^{2} \theta \\
\cos ^{2} \theta & \sin ^{2} \theta & 0
\end{array}\right) \\
& = \\
& \cos 2 \theta\left(\begin{array}{ccc}
0 & -1 / 2 & 1 / 2 \\
1 / 2 & 0 & -1 / 2 \\
-1 / 2 & 1 / 2 & 0
\end{array}\right)
\end{aligned}
$$

18. What is the value of $\tan \left(\frac{3 \pi}{8}\right)$?
(a) $\sqrt{2}-1$
(b) $\sqrt{2}+1$
(c) $1-\sqrt{2}$
(d) $-(\sqrt{2}+1)$

Solution: Let

$\theta=\frac{\pi}{8}=\frac{180}{8}=\frac{45}{2}$
$\tan \left(\frac{3 \pi}{8}\right)=\frac{3 \tan \left(\frac{\pi}{8}\right)-\tan ^{3}\left(\frac{\pi}{8}\right)}{1-3 \tan ^{2}\left(\frac{\pi}{8}\right)}$
$\tan (2 \theta+\theta)=\frac{\tan 2 \theta+\tan \theta}{1-\tan 2 \theta \tan \theta}$
$\tan 2 \theta=\tan 45^{\circ}=1$
$\tan (2 \theta+\theta)=\frac{1+\tan \theta}{1-\tan \theta}$
$\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$1=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$1-\tan ^{2} \theta=2 \tan \theta$
$\tan ^{2} \theta+2 \tan \theta-1=0$
$\tan \theta=\sqrt{2}-1$
$\tan (2 \theta+\theta)=\frac{1+\sqrt{2}-1}{2-\sqrt{2}}=\sqrt{2}+1$
19. What is $\tan ^{-1} \cot \left(\operatorname{cosec}^{-1} 2\right)$ equal to ?
(a) $\frac{\pi}{8}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{3}$

Solution: $\tan ^{-1} \cot \left(\operatorname{cosec}^{-1} 2\right)$

$$
\begin{gathered}
\operatorname{cosec}^{-1} 2=\theta \\
\operatorname{cosec} \theta=2 \\
\sin \theta=\frac{1}{2} \\
\theta=30^{0} \\
\cot \theta=\cot 30^{\circ}=\sqrt{3} \\
\tan ^{-1} \sqrt{3}=60^{\circ}
\end{gathered}
$$

Answer: (d)
20. In a triangle $A B C, a=4, b=3, c=2$. What is $\cos 3 C$ equal to?
(a) $\frac{7}{128}$
(b) $\frac{11}{128}$
(c) $\frac{7}{64}$
(d) $\frac{11}{64}$

Solution:

$$
\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{4^{2}+3^{2}-2^{2}}{2 \times 4 \times 3}=\frac{7}{8}
$$

$$
\operatorname{Cos} 3 C=4 \cos ^{3} C-3 \cos C=\frac{7}{128}
$$

21. What is $\cos 36^{0}-\cos 72^{0}$ equal to?
(a) $\frac{\sqrt{5}}{2}$
(b) $-\frac{\sqrt{5}}{2}$
(c) $\frac{1}{2}$
(d) $-\frac{1}{2}$

Solution: $\cos A-\cos B=2 \sin \frac{A+B}{2} \sin \frac{B-A}{2}$

$$
\begin{gathered}
\cos 36^{\circ}-\cos 72^{0}=2 \sin \frac{36+72}{2} \sin \frac{72-36}{2} \\
=2 \sin 54 \sin 18
\end{gathered}
$$

$$
\begin{gathered}
\sin 18^{\circ}=\frac{\sqrt{5}-1}{4} \\
\sin 54^{0}=\frac{\sqrt{5}+1}{4} \\
=2 \sin 54 \sin 18=2 \frac{5-1}{4 \times 4}=\frac{1}{2}
\end{gathered}
$$

22. If $\sec x=\frac{25}{24}$ and x lies in the fourth quadrant, then what is the value of $\tan x+\sin x ?$
(a) $-\frac{625}{168}$
(b) $-\frac{343}{600}$
(c) $\frac{625}{168}$
(d) $\frac{343}{600}$

Solution:

$$
\begin{gathered}
\sec x=\frac{25}{24}=\frac{H}{B} \\
P^{2}+B^{2}=H^{2} \\
P^{2}=(25 k)^{2}-(24 k)^{2}=49 k^{2} \\
P=7 k
\end{gathered}
$$

if x in fourth quadrant then $\sin x$ and $\tan x$ are negative.

$$
\begin{aligned}
\sin x & =\frac{P}{H}=-\frac{7}{25} \\
\tan x & =\frac{P}{B}=-\frac{7}{24} \\
\tan x+\sin x & =-\frac{7}{25}-\frac{7}{24}=-\frac{343}{600}
\end{aligned}
$$

23. What is the value of $\tan ^{2} 165^{\circ}+\cot ^{2} 165^{0}$?
(a) 7
(b) 14
(c) $4 \sqrt{3}$
(d) $8 \sqrt{3}$

Solution:

$$
\begin{aligned}
\tan 15^{\circ}= & \tan \left(45^{\circ}-30^{\circ}\right) \\
& =\frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \tan 30^{\circ}}
\end{aligned}
$$

$$
\begin{gathered}
=\frac{\mathbf{1}-\frac{\mathbf{1}}{\sqrt{\mathbf{3}}}}{\mathbf{1}+\frac{\mathbf{1}}{\sqrt{\mathbf{3}}}}=\frac{\sqrt{\mathbf{3}}-\mathbf{1}}{\sqrt{\mathbf{3}+\mathbf{1}}} \\
\tan \mathbf{1 6 5 ^ { 0 }}=\tan \left(\mathbf{1 8 0 ^ { 0 }}-\mathbf{1 5}^{\mathbf{0}}\right)=-\boldsymbol{\operatorname { t a n } \mathbf { 1 5 } ^ { \mathbf { 0 } }} \\
\tan ^{2} 165^{\circ}=\left(\frac{\sqrt{\mathbf{3}}-\mathbf{1}}{\sqrt{\mathbf{3}}+\mathbf{1}}\right)^{\mathbf{2}}=(2-\sqrt{3})^{2} \\
\tan ^{2} 165^{0}+\cot ^{2} 165^{0} \\
=(2-\sqrt{3})^{2}+\frac{1}{(2-\sqrt{3})^{2}} \\
=\mathbf{1 4}
\end{gathered}
$$

24 Consider the following statements in respect of the line passing through origin and inclining at an angle of 75° with the positive direction of x-axis:

1. The line passes through the point ($1, \frac{1}{2-\sqrt{3}}$).
2. The line entirely lies in first and third quadrants.
Which of the statements given above is/are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2

Solution:

Equation of line passing through origin
$y=m x$
Slope of the line $m=\tan 75^{\circ}$
$\tan 75^{\circ}=\tan \left(45^{\circ}+30^{\circ}\right)$
$=\frac{\tan 45^{\circ}+\tan 30^{\circ}}{1-\tan 45^{\circ} \tan 30^{\circ}}$
$=\frac{\sqrt{3}+1}{\sqrt{3}-1}$
At $x=1 y=\frac{\sqrt{3}+1}{\sqrt{3}-1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}=\frac{3-1}{3+1-2 \sqrt{3}}=\frac{1}{2-\sqrt{3}}$
Answer: (c)
25. If $P(3,4)$ is the mid-point of a line segement between the axes, then what is the equation of the line?
(a) $3 x+4 y-25=0$
(b) $4 x+3 y-24=0$
(c) $4 x-34 y=0$
(d) $3 x-4 y+7=0$

Solution:

Let Equation of Line $\frac{x}{a}+\frac{y}{b}=1$
Line intercept x-axes at $A(a, 0)$ and intercept y-axes at $B(0, b)$.
If $P(3,4)$ is the midpoint of $A B$, then
$3=\frac{a+0}{2}$
$a=6$
$4=\frac{0+b}{2}$
$b=8$
Equation of line:
$\frac{x}{6}+\frac{y}{8}=1$
$\frac{4 x+3 y}{24}=1$
$4 x+3 y-24=0$
Answer: (b)
26 The base $A B$ of an equilateral triangle $A B C$ with side 8 cm lies along the y-axis such that the mid-point of $A B$ is at the origin and B lies above the origin. What is the equation of line passing through $(8,0)$ and parallel to the side AC?
(a) $x-\sqrt{3} y-8=0$
(b) $x+\sqrt{3} y-8=0$
(c) $\sqrt{3} x+y-8 \sqrt{3}=0$
(d) $\sqrt{3} x-y-8 \sqrt{3}=0$

Solution $A B C$ is an equilateral triangle and $A B$ is base of equilateral triangle lies on y-axis. Midpoint of $A B$ is at origin. Side $A B$ is 8 cm and B lies above the origin. Co-ordinate $A(0,-$ 4). Point C lies on x-axis. Co-ordinate of $C(x$, 0)
$A C=8$

$$
\sqrt{(x-0)^{2}+(0+4)^{2}}=8
$$

$$
\begin{gathered}
x^{2}+16=64 \\
x=4 \sqrt{3}
\end{gathered}
$$

Slope of line AC : $m=\frac{-4-0}{-4 \sqrt{3}}=\frac{1}{\sqrt{3}}$
Equation of line parallel to $A C$ and passing through (8, 0)

$$
\begin{aligned}
& y=\frac{1}{\sqrt{3}}(x-8) \\
& x-\sqrt{3} y-8=0
\end{aligned}
$$

Answer: (a)
(e)
27. A Plane cuts intercepts 2, 2, 1 on the coordinate axes. What are the direction cosines of the normal to the plane?
(a) $\left\langle\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right\rangle$
(b) $\left\langle\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right\rangle$
(c) $\left\langle\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right\rangle$
(d) $\left\langle\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right\rangle$

Solution: Equation of plane

$$
\frac{x}{2}+\frac{y}{2}+\frac{z}{1}=1
$$

Direction ratio of normal to the plane
$\mathrm{a}=\frac{1}{2}, b=\frac{1}{2}$ and $c=1$

$$
l^{2}+m^{2}+n^{2}=1
$$

$l=k a, m=k b$ and $n=k c$

$$
\begin{gathered}
\frac{k^{2}}{4}+\frac{k^{2}}{4}+k^{2}=1 \\
k= \pm \sqrt{\frac{2}{3}} \\
l=\frac{1}{\sqrt{6}}, m=\frac{1}{\sqrt{6}} \text { and } n=\frac{2}{\sqrt{6}}
\end{gathered}
$$

28. Consider the following statements:
29. The direction ratios of y-axis can be < $0,4,0>$
30. The direction ratios of a line perpendicular to z-axis can be $\langle 5,6,0>$ Which of the statements given above is/are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2
31. Let \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular. What is the angle between \vec{a} and \vec{b} ?
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{2}$

Solution: If vector $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular to each other then dot product is equal to zero.
$(\vec{a}+2 \vec{b}) \cdot(5 \vec{a}-4 \vec{b})=0$
$5|\vec{a}|^{2}-4 \vec{a} \cdot \vec{b}+10 \vec{b} \cdot \vec{a}-8|\vec{b}|^{2}=0$
Since \vec{a} and \vec{b} are two unit vectors therefore
$|\vec{a}|=|\vec{b}|=1$
$6 \vec{a} \cdot \vec{b}=3$
$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
$6|\vec{a}||\vec{b}| \cos \theta=3$
$\cos \theta=\frac{3}{6}=\frac{1}{2}$

$$
\theta=\frac{\pi}{3}
$$

Answer: (c)
30. Let \vec{a}, \vec{b} and \vec{c} be unit vectors lying on the same plane. What is $\{(3 \vec{a}+2 \vec{b}) \times$ ($5 \vec{a}-4 \vec{c})\} \cdot(\vec{b}+2 \vec{c})$ equal to?
(a) -8
(b) -32
(c) 8
(d) 0

Solution: If \vec{a}, \vec{b} and \vec{c} lying on the same plane. Then the vectors $3 \vec{a}+2 \vec{b}, 5 \vec{a}-4 \vec{c}$ and $\vec{b}+2 \vec{c}$ lie on same plane. Direction of cross product of vectors $3 \vec{a}+2 \vec{b}$ and
$5 \vec{a}-4 \vec{c}$ perpendicular to plane containing vector \vec{a}, \vec{b} and \vec{c}. Dot product of $(3 \vec{a}+$ $2 \vec{b}) \times(5 \vec{a}-4 \vec{c})$ and $(\vec{b}+2 \vec{c})$ be equal to zero.
31. What are the values of x for which the angle between the vectors $2 x^{2} \hat{\imath}+3 x \hat{\jmath}+\hat{k}$ and $\hat{\imath}-2 \hat{\jmath}+x^{2} \hat{k}$ is obtuse?
(a) $0<x<2$
(b) $x<0$
(c) $x>2$
(d) $0 \leq x \leq 2$

Solution: $\vec{a} . \vec{b}<0$

$$
\begin{gathered}
2 x^{2}-6 x+x^{2}<0 \\
3 x(x-2)<0 \\
0<x<2
\end{gathered}
$$

32 The position vectors of vertices A, B and C of triangle $A B C$ are respectively $\hat{\jmath}+\hat{k}$, $3 \hat{\imath}+\hat{\jmath}+5 \hat{k}$ and $3 \hat{\jmath}+3 \hat{k}$. What is angle C equal to?
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{2}$

Solution:

$$
\begin{aligned}
& \overrightarrow{O A}=\hat{\jmath}+\hat{k} \\
& \overrightarrow{O B}=3 \hat{\imath}+\hat{\jmath}+5 \hat{k} \\
& \overrightarrow{O C}=3 \hat{\jmath}+3 \hat{k} \\
& \overrightarrow{B C}= \overrightarrow{O C}-\overrightarrow{O B} \\
&=(3 \hat{\jmath}+3 \hat{k})-(3 \hat{\imath}+\hat{\jmath}+5 \hat{k}) \\
&=-3 \hat{\imath}+2 \hat{\jmath}-2 \hat{k} \\
& \overrightarrow{C A}= \overrightarrow{O A}-\overrightarrow{O C} \\
&=(\hat{\jmath}+\hat{k})-(3 \hat{\jmath}+3 \hat{k}) \\
&=-2 \hat{\jmath}-2 \hat{k} \\
& \overrightarrow{A B}= \overrightarrow{O B}-\overrightarrow{O A} \\
&=(3 \hat{\imath}+\hat{\jmath}+5 \hat{k})-(\hat{\jmath}+\hat{k}) \\
&= 3 \hat{\imath}+4 \hat{k} \\
& \cos C= \frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{aligned}
$$

33. What is the area of the region bounded by $x-|y|=0$ and $x-2=0 ?$
(a) 1
(b) 2
(c) 4
(d) 8

Solution: Area $=\frac{1}{2} \times 4 \times 2=4$
34. What is $\lim _{x \rightarrow 0} \frac{x}{\sqrt{1-\cos 4 x}}$ equal to ?
(a) $\frac{1}{2 \sqrt{2}}$
(b) $-\frac{1}{2 \sqrt{2}}$
(c) $\sqrt{2}$
(d) Limit does not exist

Solution:

$$
\begin{aligned}
& \cos 4 x=1-2 \sin ^{2} 2 x \\
& 1-\cos 4 x=2 \sin ^{2} 2 x \\
& \begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{x}{\sqrt{1-\cos 4 x}}=\lim _{x \rightarrow 0^{+}} \frac{x}{\sqrt{2} \sin 2 x}=\frac{1}{2 \sqrt{2}} \\
& \begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{x}{\sqrt{1-\cos 4 x}} & =\lim _{x \rightarrow 0^{-}} \frac{x}{-\sqrt{2} \sin 2 x} \\
& =-\frac{1}{2 \sqrt{2}}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Answer: (d)
35. What is

$$
\lim _{x \rightarrow \frac{\pi}{2}} \frac{4 x-2 \pi}{\cos x}
$$

equal to?
(a) -4
(b) -2
(c) 2
(d) 4

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow \frac{\pi}{2}} \frac{4 x-2 \pi}{\cos x}=4 & \frac{x-\frac{\pi}{2}}{\sin \left(\frac{\pi}{2}-x\right)}=\frac{-4}{\frac{\sin \left(\frac{\pi}{2}-x\right)}{\left(\frac{\pi}{2}-x\right)}} \\
& =-4
\end{aligned}
$$

Answer: (a)
36 If

$$
f(x)=\frac{x^{2}+x+|x|}{x}
$$

, then what is $\lim _{x \rightarrow 0} f(x)$ equal to?
(a) 0
(b) 1
(c) 2
(d) $\lim _{x \rightarrow 0} f(x)$ does not exist

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{x^{2}+x+|x|}{x} \\
&=\lim _{x \rightarrow 0^{+}} \frac{x^{2}+x+x}{x} \\
&=\lim _{x \rightarrow 0^{+}} \frac{x^{2}+2 x}{x}=2 \\
& \begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} & \frac{x^{2}+x+|x|}{x} \\
& =\lim _{x \rightarrow 0^{-}} \frac{x^{2}+x-x}{x} \\
& =\lim _{x \rightarrow 0^{-}} \frac{x^{2}}{x}=0
\end{aligned} \\
& \lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x)
\end{aligned}
$$

$\lim _{x \rightarrow 0} f(x)$ does not exist
Answer: (d)
37. What is $\lim _{h \rightarrow 0} \frac{\sin ^{2}(x+h)-\sin ^{2} x}{h}$ equal to ?
(a) $\sin ^{2} x$
(b) $\cos ^{2} x$
(c) $\sin 2 x$
(d) $\cos 2 x$

Solution:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sin ^{2}(x+h)-\sin ^{2} x}{h} & =\frac{d\left(\sin ^{2} x\right)}{d x} \\
& =2 \sin x \cos x=\sin 2 x
\end{aligned}
$$

Answer: (c)
38. The centre of the circle passing through origin and making positive intercepts 4 and 6 on the coordinate axes, lies on the line
(a) $2 x-y+1=0$
(b) $3 x-2 y-1=0$
(c) $3 x-4 y+6=0$
(d) $2 x+3 y-26=0$

Solution: Circle passes through origin and cut x-intercept at point $A(4,0)$ and cut y intercept at point $B(0,6)$.

Centre of circle is mid point of $A B$.

$$
\begin{aligned}
& x_{0}=\frac{x_{A}+x_{B}}{2}=\frac{4+0}{2}=2 \\
& y_{0}=\frac{y_{A}+y_{B}}{2}=\frac{0+6}{2}=3
\end{aligned}
$$

Centre $C=(2,3)$
Point C satisfy $3 x-4 y+6=0$

$$
3 \times 2-4 \times 3+6=6-12+6=0
$$

39. The centre of an ellipse is at (0,0), major axis is on the y-axis. If the ellipse passes through $(3,2)$ and $(1,6)$, then what is its eccentricity?
(a) $\frac{\sqrt{3}}{2}$
(b) $\sqrt{3}$
(c) $\frac{\sqrt{5}}{2}$
(d) $\sqrt{5}$

Solution: If major axes lies on y-axis then equation of the ellipse is
$\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$
$\frac{9}{b^{2}}+\frac{4}{a^{2}}=1$
$\frac{1}{b^{2}}+\frac{36}{a^{2}}=1$
$a^{2}=40$
$b^{2}=10$
$b^{2}=a^{2}\left(1-e^{2}\right)$
$10=40\left(1-e^{2}\right)$
$e^{2}=1-\frac{1}{4}=\frac{3}{4}$
$e=\frac{\sqrt{3}}{2}$
40. If $y=\left(x^{x}\right)^{x}$, then which one of the following is correct?
(a) $\frac{d y}{d x}+x y(1+2 \ln x)=0$
(b) $\frac{d y}{d x}-x y(1+2 \ln x)=0$
(c) $\frac{d y}{d x}-2 x y(1+\ln x)=0$
(d) $\frac{d y}{d x}+2 x y(1+\ln x)=0$

Solution: $y=\left(x^{x}\right)^{x}$

$$
\begin{gathered}
\ln y=x^{2} \ln x \\
\frac{1}{y} \frac{d y}{d x}=2 x \ln x+\frac{x^{2}}{x}=2 x \ln x+x
\end{gathered}
$$

$$
\begin{gathered}
\frac{d y}{d x}=x y(1+2 \ln x) \\
\frac{d y}{d x}-x y(1+2 \ln x)=0
\end{gathered}
$$

41. What is the maximum value of $3(\sin x-$ $\cos x)+4\left(\cos ^{3} x-\sin ^{3} x\right) ?$
(a) 1
(b) $\sqrt{2}$
(c) $\sqrt{3}$
(d) 2

Solution:
$\mathrm{f}(\mathrm{x})=3(\sin \mathrm{x}-\cos \mathrm{x})+4\left(\cos ^{3} \mathrm{x}-\sin ^{3} \mathrm{x}\right)$
$\sin 3 x=3 \sin x-4 \sin ^{3} x$
$\cos 3 \mathrm{x}=4 \cos ^{3} \mathrm{x}-3 \cos \mathrm{x}$
$f(x)=\sin 3 x+\cos 3 x$
Maximum value of $f(x)$ is $\sqrt{2}$
42. What is the area of the region (in the first quadrant) bounded by $y=\sqrt{1-x^{2}}, y=x$ and $y=0$?
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{8}$
(d) $\frac{\pi}{12}$

Solution: Intersection of curve $y=\sqrt{1-x^{2}}$
and $y=x$.
$x=\sqrt{1-x^{2}}$
$x^{2}=1-x^{2}$
$2 x^{2}=1$
$x=\frac{1}{\sqrt{2}}$
Area $=\frac{1}{2} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}+\int_{\frac{1}{\sqrt{2}}}^{1} \sqrt{1-y^{2}} d y$
$I=\int \sqrt{1-y^{2}} d y$
$y=\sin \theta$
$d y=\cos \theta d \theta$
$I=\int \cos ^{2} \theta d \theta=\int \frac{1+\cos 2 \theta}{2} d \theta$
$=\frac{\theta}{2}+\frac{\cos 2 \theta}{4}$

$$
\begin{aligned}
\int_{\frac{1}{\sqrt{2}}}^{1} \sqrt{1-y^{2}} d y & =\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta \\
& =\frac{\frac{\pi}{2}-\frac{\pi}{4}}{2}+\frac{\cos \pi-\cos \frac{\pi}{2}}{4} \\
& =\frac{\pi}{8}-\frac{1}{4} \\
\text { Area } & =\frac{1}{4}+\frac{\pi}{8}-\frac{1}{4}=\frac{\pi}{8}
\end{aligned}
$$

43. What is the value of $\sin (2 n \pi+$ $\left.\frac{5 \pi}{6}\right) \sin \left(2 n \pi-\frac{5 \pi}{6}\right)$ where $n \in Z$?
(a) $-\frac{1}{4}$
(b) $-\frac{3}{4}$
(c) $\frac{1}{4}$
(d) $\frac{3}{4}$

Solution:

$$
\begin{aligned}
& \sin (2 n \pi-\theta)=-\sin \theta \\
& \sin (2 n \pi+\theta)=\sin \theta \\
& \sin \left(2 n \pi+\frac{5 \pi}{6}\right) \sin \left(2 n \pi-\frac{5 \pi}{6}\right) \\
& =-\sin \left(\frac{5 \pi}{6}\right) \sin \left(\frac{5 \pi}{6}\right) \\
& =-\sin ^{2} 150^{\circ}=-\left(\frac{1}{2}\right)^{2}=-\frac{1}{4}
\end{aligned}
$$

44. If $1+2(\sin x+\cos x)(\sin x-\cos x)=0$ where $0<x<360^{\circ}$, then how many values does x take?
(a) Only one value
(b) Only two values
(c) Only three values
(d) Four values

Solution:

$1+2(\sin x+\cos x)(\sin x-\cos x)=0$
$1+2\left(\sin ^{2} x-\cos ^{2} x\right)=0$
$1-2 \cos 2 x=0$
$\cos 2 x=\frac{1}{2}$
Period of $\cos 2 x$ is .
Number of values x which satisfy equation is four values.

Consider the following for the next three

(03) items that follow:

Let $f(x)$ be a function satisfying $f(x+y)=$ $f(x) f(y)$ for all $x, y \in N$ such that $(1)=2$:
45. If $\sum_{x=2}^{n} f(x)=2044$, then what is the value of n ?
(a) 8
(b) 9
(c) 10
(d) 11

Solution: $\sum_{x=2}^{n} f(x)=2044$

$$
\begin{gathered}
f(2)+f(3)+\ldots+f(n)=2044 \\
f(x+y)=f(x) f(y) \\
f(2)=f(1+1)=f(1) f(1)=f^{2}(1) \\
f(3)=f(2+1)=f(2) f(1)=f^{3}(1) \\
f(n)=f^{n}(1) \\
f^{2}(1)+f^{3}(1)+\cdots+f^{n}(1)=2044 \\
2^{2}+2^{3}+\cdots+2^{n}=2044 \\
\frac{a\left(r^{n}-1\right)}{r-1}=\frac{4\left(2^{n-1}-1\right)}{2-1}=2^{n+1}-4=2044 \\
2^{n+1}=2048=2^{11} \\
n=10
\end{gathered}
$$

46. What is $\sum_{x=1}^{5} f(2 x-1)$ equal to ?
(a) 341
(b) 682
(c) 1023
(d) 1364

Solution:
$\sum_{x=1}^{5} f(2 x-1)$
$=f(1)+f(3)+f(5)+f(7)+f(9)$
$=f(1)+f^{3}(1)+f^{5}(1)+f^{7}(1)+f^{9}(1)$
$=2+2^{3}+2^{5}+2^{7}+2^{9}$
$=\frac{2\left(4^{5}-1\right)}{4-1}=\frac{2\left(2^{10}-1\right)}{3}=682$
47. What is $\sum_{x=1}^{6} 2^{x} f(x)$ equal to ?
(a) 1365
(b) 2730
(c) 4024
(d) 5460

Solution:

