1. Suppose ω is a cube root of unity with $\neq 1$. Suppose P and Q are the points on the complex plane defined by ω and ω^2 . If O is the origin, then what is the angle between OP and OQ?

(a)
$$60^{\circ}$$
 (b) 90°
(c) 120° (d) 150°

Solution:

Cubic roots of unity is

$$x^{3} = 1$$

$$x^{3} - 1 = 0$$

$$(x - 1)(x^{2} + x + 1) = 0$$

$$x - 1 = 0$$

$$x = 1$$

$$x^{2} + x + 1 = 0$$

$$x = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$

$$\omega = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$

$$\omega^{2} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

Angle made by ω from x-axis is 120⁰ and Angle made by ω^2 from x-axis is 240⁰. Therefore angle made by OP and OQ is 120⁰.

Answer: (c)

2. If $x^2 - px + 4 > 0$ for all real values of x, then which one of the following is correct?

(a)
$$|p| < 4$$
 (b) $|p| \le 4$

(c) |p| > 4 (d) $|p| \ge 4$

Solution:

$$x^{2} - px + 4 > 0$$
$$\left(x - \frac{p}{2}\right)^{2} + \frac{16 - p^{2}}{4} > 0$$

IF $16 - p^2 > 0$ then above quadratic equation is always positive for all values of x.

$$16 > p^{2}$$
$$\sqrt{16} > \sqrt{p^{2}}$$
$$4 > |p|$$

Answer: (a)

3. If $z = x + iy = \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right)^{-25}$, where $i = \sqrt{-1}$, then what is the fundamental amplitude of $\frac{z - \sqrt{2}}{z - i\sqrt{2}}$?

(a)
$$\pi$$
 (b) $\frac{\pi}{2}$
(c) $\frac{\pi}{3}$ (d) $\frac{\pi}{4}$

Solution:

$$\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} = re^{i\theta}$$

$$r = \sqrt{x^2 + y^2} = \sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + \left(-\frac{1}{\sqrt{2}}\right)^2} = 1$$

$$\tan \theta = \frac{y}{x} = -\frac{1/\sqrt{2}}{1/\sqrt{2}} = -1$$

$$\theta = -\frac{\pi}{4}$$

$$\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} = 1e^{-i\frac{\pi}{4}}$$

$$\left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right)^{-25} = e^{-i\frac{\pi}{4} \times -25} = e^{i\frac{25\pi}{4}}$$

$$= \cos\left(\frac{25\pi}{4}\right) + i\sin\left(\frac{25\pi}{4}\right)$$

$$\cos\left(\frac{25\pi}{4}\right) = \cos\left(6\pi + \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

$$\sin\left(\frac{25\pi}{4}\right) = \sin\left(6\pi + \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

$$\left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right)^{-25} = \frac{1+i}{\sqrt{2}}$$

$$\frac{z - \sqrt{2}}{z - i\sqrt{2}} = \frac{\frac{1+i}{\sqrt{2}} - \sqrt{2}}{\frac{1+i}{\sqrt{2}} - i\sqrt{2}} = \frac{\left(\frac{1}{\sqrt{2}} - \sqrt{2}\right) + \frac{i}{\sqrt{2}}}{\left(\frac{1}{\sqrt{2}}\right) + i\left(\frac{1}{\sqrt{2}} - \sqrt{2}\right)}$$
$$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$$
$$\arg\left(\frac{z - \sqrt{2}}{z - i\sqrt{2}}\right) = \arg\left(\left(\frac{1}{\sqrt{2}} - \sqrt{2}\right) + \frac{i}{\sqrt{2}}\right)$$
$$-\arg\left(\left(\frac{1}{\sqrt{2}}\right) + i\left(\frac{1}{\sqrt{2}} - \sqrt{2}\right)\right)$$

$$\arg\left(\left(\frac{1}{\sqrt{2}} - \sqrt{2}\right) + \frac{i}{\sqrt{2}}\right)$$

= $\tan^{-1}\frac{y}{x} = \tan^{-1}\frac{1/\sqrt{2}}{-1/\sqrt{2}}$
= $\tan^{-1}(-1) = -\frac{\pi}{4}$
$$\arg\left(\left(\frac{1}{\sqrt{2}}\right) + i\left(\frac{1}{\sqrt{2}} - \sqrt{2}\right)\right)$$

= $\tan^{-1}\frac{y}{x} = \tan^{-1}\frac{-1/\sqrt{2}}{1/\sqrt{2}}$
= $\tan^{-1}(-1) = -\frac{\pi}{4}$
$$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2) = 0$$

Answer: (*)

4. What is the range of the function $y = \frac{x^2}{1+x^2}$ where $\in R$?

(a) [0,1)	(b) (0,1)
-----------	-----------

Solution:

$$y = \frac{x^2}{1+x^2}$$

Function y is even function f(-x) = f(x). Function y = $1 - \frac{1}{1+x^2}$ Range of function is [0, 1).

Answer: (a)

5. A straight line intersects x and y axes. at P and Q respectively. If (3, 5) is the middle point of PQ, then what is the area of the triangle OPQ?

- (a) 12 square units
- (b) 15 square units
- (c) 20 square units
- (d) 30 square units

Solution: If P is x-intercept and Q is yintercept of line L. Co-ordinate of point P (a, 0)and Q (0, b).

Coordinate of Midpoint of PQ is $\left(\frac{a}{2}, \frac{b}{2}\right)$. OP = a = 6 and OQ = b = 10 Area of right angles triangle OPQ = $\frac{1}{2} \times OP \times OQ = \frac{1}{2} \times 6 \times 10 = 30$ square units.

Answer: (d)

6. If a circle of radius b units with center at (0, b) touches the line $y = x - \sqrt{2}$, then what is the value of b?

(a)
$$2 + \sqrt{2}$$
 (b) $2 - \sqrt{2}$

(c)
$$2\sqrt{2}$$
 (d) $\sqrt{2}$

Solution:

Perpendicular distance from the centre of circle to line which touches the circle is equal to radius of the circle.

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

Given d = b, $x_1 = 0$ and $y_1 = b$

$$b = \frac{|x_1 - y_1 - \sqrt{2}|}{\sqrt{1+1}} = \frac{|0 - b - \sqrt{2}|}{\sqrt{2}} = \frac{b + \sqrt{2}}{\sqrt{2}}$$
$$\sqrt{2}b = b + \sqrt{2}$$
$$b = \frac{\sqrt{2}}{\sqrt{2} - 1} = 2 + \sqrt{2}$$

Answer: (a)

Consider the function $f(\theta) = 4(\sin^2 \theta + \cos^4 \theta)$

7. What is the maximum value of the function $f(\theta)$?

(a) 1	(b) 2
(c) 3	(d) 4

Solution:

$$f(\theta) = 4(\sin^2 \theta + \cos^4 \theta)$$
$$= 4(\cos^4 \theta - \cos^2 \theta + 1)$$

Let $\cos^2 \theta = x$

$$f(x) = 4(x^{2} - x + 1)$$
$$f(x) = 4\left(\left(x - \frac{1}{2}\right)^{2} + \frac{3}{4}\right)$$

Maximum value of f(x) when $\left(x - \frac{1}{2}\right)^2$ is maximum. Value of x lies between 0 to 1. Maximum value of $\left(x - \frac{1}{2}\right)^2$ occur at x = 0 and x =1.

$$f(x) = 4\left(\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}\right) = 4\left(\left(1 - \frac{1}{2}\right)^2 + \frac{3}{4}\right)$$
$$= 4$$

Answer: (d)

- 8. What is the minimum value of the function $f(\theta)$?
 - (a) 0 (b) 1
 - (c) 2 (d) 3

Solution:

$$f(x) = 4\left(\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}\right)$$

Minimum value of f(x) occur at $x = \frac{1}{2}$.

Minimum value of f(x) = 3

Answer: (d)

- 9. Consider the following statements
 - 1. $f(\theta) = 2$ has no solution.
 - 2. $f(\theta) = \frac{7}{2}$ has a solution.

Which of the above statements is/are correct?

(a) 1 only (b) 2 only

(c) Both 1 and 2 (d) Neither 1 nor 2

Solution:

$$f(\theta) = 4(\sin^2 \theta + \cos^4 \theta)$$
$$= 4(\cos^4 \theta - \cos^2 \theta + 1)$$

Since $f(\theta)$ is continuous function. Minimum value of $f(\theta)$ is 3 and maximum value of $f(\theta)$ is 4.

So $f(\theta) = 2$ has no solution and $f(\theta) = \frac{7}{2}$ has more than one solution.

Answer: (a)

For the next two (2) items that follow:

Consider the curves f(x) = x|x| - 1 and

$$g(x) = \begin{cases} \frac{3x}{2}, & x > 0\\ 2x, & x \le 0 \end{cases}$$

10. Where do the curves intersect?

(a) At (2, 3) only

- (b) At (-1, -2) only
- (c) At (2, 3) and (-1, -2)
- (d) Neither at (2, 3) not at (-1, -2)

Solution:

$$f(x) = g(x)$$

$$x|x| - 1 = \frac{3x}{2}$$

$$x^{2} - 1 - \frac{3x}{2} = 0$$

$$2x^{2} - 3x - 2 = 0$$

$$x = 2, -\frac{1}{2}$$

But x > 2 therefore x =2, y = 3

$$f(x) = g(x)$$

$$x|x| - 1 = 2x$$

$$-x^{2} - 1 = 2x$$

$$x^{2} + 2x + 1 = 0$$

$$x = -1$$

$$y = -2$$

Answer:(c)

11. What is the area bounded by the curves?

(a) $\frac{17}{6}$ square units (b) $\frac{8}{3}$ square units (c) 2 square units (d) $\frac{1}{3}$ square units Solution: Area = $\left|\int_{a}^{b}(f(x) - g(x)) dx\right|$ $I = \left|\int_{-1}^{0}(-x^{2} - 1 - 2x)dx\right| + \left|\int_{0}^{2}\left(x^{2} - 1 - \frac{3x}{2}\right)dx\right|$ $\int_{-1}^{0}(-x^{2} - 1 - 2x)dx$ $= -\frac{x^{3}}{3} - x - \frac{2x^{2}}{2}\Big|_{-1}^{0}$ $= -\frac{0^{3}}{3} - 0 - 0^{2} + \frac{(-1)^{3}}{3} + (-1) + (-1)^{2} = -\frac{1}{3}$ $\int_{0}^{2}\left(x^{2} - 1 - \frac{3x}{2}\right)dx$ $= \frac{x^{3}}{3} - x - \frac{3x^{2}}{2}\Big|_{0}^{2}$ $= \frac{8}{3} - 2 - 3$ $= \frac{8 - 15}{3} = -\frac{7}{3}$ $I = \frac{1}{3} + \frac{7}{3} = \frac{8}{3}$ For the next two (2) items that follow:

Consider the functions f(x) = xg(x) and $g(x) = \left[\frac{1}{x}\right]$ where [.] is the greatest integer function.

12. What is

$$\int_{\frac{1}{3}}^{\frac{1}{2}} g(x) dx$$

equal to ?
(a) $\frac{1}{6}$ (b) $\frac{1}{3}$
(c) $\frac{5}{18}$ (d) $\frac{5}{36}$
Solution: $g(x) = \left[\frac{1}{x}\right]$
 $\frac{1}{3} \le x \le \frac{1}{2}$
 $2 \le \frac{1}{x} \le 3$
 $g(x) = 2$, $2 \le \frac{1}{x} < 3$
 $\int_{\frac{1}{3}}^{\frac{1}{2}} g(x) dx = \int_{\frac{1}{3}}^{\frac{1}{2}} 2 dx = \frac{1}{3}$

13. What is

$$\int_{\frac{1}{3}}^{1} f(x) dx$$
(a) $\frac{37}{72}$
(b) $\frac{2}{3}$
(c) $\frac{17}{72}$
(d) $\frac{37}{144}$

Solution:

$$\int_{\frac{1}{3}}^{1} f(x) dx = \int_{\frac{1}{3}}^{1} xg(x) dx$$
$$= \int_{\frac{1}{3}}^{\frac{1}{2}} 2x dx + \int_{\frac{1}{2}}^{1} x dx$$
$$= x^{2} |\frac{1}{\frac{2}{3}} + \frac{x^{2}}{2} |\frac{1}{\frac{1}{2}} = \frac{37}{72}$$

For the next five (5) items that follow:

Consider the function $f(x) = |x - 1| + x^2$ where $x \in R$.

- **14**. Which one of the following statements is correct?
 - (a) f(x) is continuous but not differentiable at x =0
 - (b) f (x) is continuous but not differentiable at x =1
 - (c) f(x) is differentiable at x =1

(d) f(x) is not differentiable at x =0 and x =1 **Solution:**

$$f(x) = x^{2} - x + 1 \quad x < 1$$

$$= x^{2} + x - 1 \quad x \ge 1$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^{2} - x + 1 = 1$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} x^{2} + x - 1 = 1$$

$$f(1) = 1$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$

$$f(x) \text{ is continuous function}$$

$$f'(x) = 2x - 1, \quad x < 1$$

$$= 2x + 1, \quad x > 1$$

$$= 2x + 1, x \ge 1$$

 $f'(1^-) = 1$
 $f'(1^+) = 3$

f(x) is not differentiable at x = 1.

Answer: (b)

15. What is the area of the region bounded by x-axis, the curve y = f(x) and the two ordiantes $x = \frac{1}{2}$ and x = 1?

- (a) $\frac{5}{12}$ square unit
- (b) $\frac{5}{6}$ square unit
- (c) $\frac{7}{6}$ square units
- (d) 2 square units

Solution:

$$y = |x - 1| + x^{2}$$

If $\frac{1}{2} \le x \le 1$
$$y = x^{2} - x + 1$$

Area
$$= \int_{\frac{1}{2}}^{1} x^{2} - x + 1 dx$$

$$= \frac{x^3}{3} - \frac{x^2}{2} + x \Big|_{\frac{1}{2}}^{1}$$
$$= \frac{1}{3} - \frac{1}{2} + 1 - \frac{1}{24} + \frac{1}{8} - \frac{1}{2} = \frac{5}{12}$$
Answer: (a)

16. What is the area of the region bounded by x-axis, the curve y = f(x) and the two ordinates x = 1 and $x = \frac{3}{2}$? (a) $\frac{5}{12}$ square unit (b) $\frac{7}{12}$ square unit (c) $\frac{2}{3}$ square units (d) $\frac{11}{12}$ square units **Solution**: if $1 \le x \le \frac{3}{2}$ $f(x) = x - 1 + x^2 = x^2 + x - 1$ Area $= \int_{1}^{3/2} x^2 + x - 1 dx = \frac{11}{12}$ **Answer:** (d)

For the next two (2) items that follow:

Consider the lines

y = 3x, y = 6x and y = 9

17. What is the area of the triangle formed by these lines?

(a)
$$\frac{27}{4}$$
 square units

(b) $\frac{27}{2}$ square units

(c) $\frac{19}{4}$ square units

(d) $\frac{19}{2}$ square units

Solution:

Vertex of triangle are A(0, 0), B(3, 9) and C(3/2, 9).

Area enclosed by lines y = 3x, y = 6x and y = 9

$$=\frac{1}{2} \times 9 \times 3 - \frac{1}{2} \times 9 \times \frac{3}{2} = \frac{27}{4}$$

Answer: (a)

18. The centroid of the triangle is at which one of the following points?

(a) (3,6)

(b)
$$\left(\frac{3}{2}, 6\right)$$

(c) (3,3)

(d) $\left(\frac{3}{2},9\right)$

Solution:

Vertex of triangle are A(0, 0), B(3, 9) and C(3/2, 9).

Centroid of the triangle G

$$= \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right) \equiv \left(\frac{0 + 3 + \frac{3}{2}}{3}, \frac{0 + 9 + 9}{3}\right)$$
$$= \left(\frac{3}{2}, 6\right)$$

Answer: (b)

For the next two (2) items that follow:

Consider the two circles

$$(x-1)^2 + (y-3)^2 = r^2$$
 and

$$x^2 + y^2 - 8x + 2y + 8 = 0$$

19.What is the distance between the centres of the two circles?

(a) 5 units	(b) 6 units
-------------	-------------

(c) 8 units	(d) 10 units
-------------	--------------

Solution: The equation of the two circles

are $(x-1)^2 + (y-3)^2 = r^2$ and

$$x^{2} + y^{2} - 8x + 2y + 8 = 0$$

 $C_1 \equiv (1, 3) \text{ and } C_2 \equiv (4, -1)$

Distance between the circles is

$$= \sqrt{(4-1)^2 + (-1-3)^2} = \sqrt{9+16} = 5$$

20. If the circles intersect at two distinct points, then which one of the following is correct?

(a) r = 1 (b) 1 < r < 2(c) r = 2 (d) 2 < r < 8Solution: radius of circle-2 $R_2 = 3$

if r = 2 two circles touches internally and if r

= 8 two circles touches externally.

Two circles intersect at two distinct point when r lies between 2 to 8.

For the next two (2) items that follow:

Consider the two lines x + y + 1 = 0 and 3x + 2y + 1 = 0

21. What is the equation of the line passing through the point of intersection of the given lines and parallel to x-axis?

(a)
$$y + 1 = 0$$

(b)
$$y - 1 = 0$$

(c)
$$y - 2 = 0$$

(d)
$$y + 2 = 0$$

Solution:

Intersection of lines x + y + 1 = 0 and 3x + 2y + 1 = 0 is (1, -2)

Line passing through point of intersection

and parallel to x-axis is y = -2.

Equation of line is y + 2 = 0

Answer: (d)

22. What is the equation of the line passing through the point of intersection of the given lines and parallel to y-axis?

(a)
$$x + 1 = 0$$
 (b) $x - 1 = 0$

(c)
$$x - 2 = 0$$
 (d) $x + 2 = 0$

Solution:

Intersection of lines x + y + 1 = 0 and 3x + 2y + 1 = 0 is (1, -2)

Line passing through point of intersection and parallel to y-axis is x = 1.

Equation of line is x - 1 = 0

Answer: (b)

For the next three (2) items that follow:

A plane P passes through the line of intersection of the planes 2x - y + 3z = 2, x + y - z = 1 and the point (1, 0, 1).

23. What are the direction ratios of the line of intersection of the given planes?

- (a) (2, −5, −3)
- (b) (1, -5, -3)
- (c) (2, 5, 3)
- (d) (1, 3, 5)

Solution: Let direction ratio of line is (a, b, c)

Equation of line passing through intersection of the planes 2x - y + 3z = 2, x + y - z = 1

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$$

For the next two (2) items that follow:

Let \hat{a}, \hat{b} be two unit vectors and θ be the angle between them.

24. What is $\cos\left(\frac{\theta}{2}\right)$ equal to?

(a)
$$\frac{|\hat{a}-\hat{b}|}{2}$$
 (b) $\frac{|\hat{a}+\hat{b}|}{2}$
(c) $\frac{|\hat{a}-\hat{b}|}{4}$ (d) $\frac{|\hat{a}+\hat{b}|}{4}$

Solution: if \hat{a} , \hat{b} be two unit vectors

$$|\hat{a}| = |\hat{b}| = 1$$

Dot product of vectors
$$\hat{a}, \hat{b}$$
 is
 $\hat{a}.\hat{b} = |\hat{a}||\hat{b}|\cos\theta = 1 \times 1 \times \cos\theta$
 $|\hat{a}+\hat{b}|^2 = (\hat{a}+\hat{b}).(\hat{a}+\hat{b})$
 $= |\hat{a}|^2 + |\hat{b}|^2 + 2\hat{a}.\hat{b} = 2(1+\hat{a}.\hat{b})$
 $= 2(1+\cos\theta) = 4\cos^2\frac{\theta}{2}$
 $\cos\frac{\theta}{2} = \frac{|\hat{a}+\hat{b}|}{2}$

Answer: (b)

25. What is $\sin\left(\frac{\theta}{2}\right)$ equal to?

(a)
$$\frac{|\hat{a}-\hat{b}|}{2}$$
 (b) $\frac{|\hat{a}+\hat{b}|}{2}$
(c) $\frac{|\hat{a}-\hat{b}|}{4}$ (d) $\frac{|\hat{a}+\hat{b}|}{4}$

Solution:

$$\begin{aligned} \left| \hat{a} - \hat{b} \right|^2 \\ &= (\hat{a} - \hat{b}).(\hat{a} - \hat{b}) \\ &= \left| \hat{a} \right|^2 + \left| \hat{b} \right|^2 - 2\hat{a}.\hat{b} \\ &= 2(1 - \hat{a}.\hat{b}) \\ &= 2(1 - \cos\theta) \\ &= 4\sin^2\frac{\theta}{2} \\ &\sin\frac{\theta}{2} = \frac{\left| \hat{a} - \hat{b} \right|}{2} \\ &\sin\frac{\theta}{2} = \frac{\left| \hat{a} - \hat{b} \right|}{2} \\ &\mathbf{Answer:} (b) \end{aligned}$$
26. What is

$$\int_{-2}^{2} x dx - \int_{-2}^{2} [x] dx$$
equal to, where [.] is the greatest integer function?
(a) 0 (b) 1
(c) 2 (d) 4
Solution: $\int_{-2}^{2} x dx = 0$
 $\int_{-2}^{2} [x] dx = \int_{-2}^{-1} [x] dx + \int_{-1}^{0} [x] dx$
 $+ \int_{0}^{1} [x] dx + \int_{1}^{2} [x] dx$
 $\int_{-2}^{-1} [x] dx = \int_{-2}^{-1} (-2) dx = -2$
 $\int_{0}^{0} [x] dx = \int_{-2}^{-1} (-1) dx = -1$
 $\int_{0}^{1} [x] dx = \int_{1}^{2} (0) dx = 0$
 $\int_{1}^{2} [x] dx = \int_{1}^{2} 1 dx = 1$
 $\int_{-2}^{2} [x] dx = -2 - 1 + 0 + 1 = -2$
 $\int_{-2}^{2} x dx - \int_{-2}^{2} [x] dx = 2$
27. What is $\lim_{x\to 0} e^{-\frac{1}{x^2}}$ equal to?
(a) 0
(b) 1
(c) -1
(d) Limit does not exist.
Solution: $\lim_{x\to 0} e^{-\frac{1}{x^2}} = e^{-\infty} = \frac{1}{e^{\infty}}$
 $= \frac{1}{\infty}$

Answer: (a)

J

28. What is $\int_0^{4\pi} |\cos x| dx$ equal to?

Solution: $I = \int_0^{4\pi} |\cos x| dx$

 $|\cos x|$ is a periodic function with period π

= 0

$$I = \int_0^{4\pi} |\cos x| \, dx = 4 \int_0^{\pi} |\cos x| \, dx$$

$$= 4 \int_0^{\frac{\pi}{2}} \cos x \, dx + 4 \int_{\frac{\pi}{2}}^{\pi} -\cos x \, dx$$
$$= 8$$

Answer: (d)

29. (a, 2b) is the mid-point of the line segment joining the points (10, -6) and (k, 4). If a - 2b = 7, then what is the value of k? (a) 2 (b) 3 (c) 4 (b) 5 **Solution**: $a = \frac{10+k}{2}$ $2b = \frac{-6+4}{2} = -1$ a - 2b = 7a + 1 = 7a = 6 $\frac{10+k}{2} = 6$ k = 12 - 10 = 2Answer: (a)

30. if $\log_a(ab) = x$, then what is $\log_b(ab)$ equal to?

(a)
$$\frac{1}{x}$$
 (b) $\frac{x}{x+1}$
(c) $\frac{x}{1-x}$ (d) $\frac{x}{x-1}$
Solution: $\log_a(ab) = x$
 $\log_a a + \log_a b = x$
 $1 + \log_a b = x$
 $\log_b a = \frac{1}{\log_a b} = \frac{1}{x-1}$
 $\log_b(ab) = \log_b a + \log_b b$
 $= \log_b a + 1 = \frac{1}{x-1} + 1 = \frac{x}{x-1}$

Answer: (d)

31. What is the number of different messages that can be represented by three 0's and two 1's?

(a) 10 (b) 9 (c) 8 (d) 7 **Solution**: Number of ways = $\frac{n!}{p!q!}$ Total number of numbers are 5. 0 are 3 times and 1 is two times. p = 3 and q = 2

n = 5

Number of ways = $\frac{5!}{3!2!} = \frac{5\times4}{2} = 10$ 32. The system of linear equations kx + y + z = 1, x + ky + z = 1 and x + y + kz = 1 has a unique solution under which one of the following conditions?

- (a) $k \neq 1$ and $k \neq -2$
- (b) $k \neq 1$ and $k \neq 2$
- (c) $k \neq -1$ and $k \neq -2$
- (d) $k \neq -1$ and $k \neq 2$

Solution: System of linear equation are

kx + y + z = 1

- x + ky + z = 1
- x + y + kz = 1

Simultaneous equation can be written in form of AX = B

 $\mathsf{A} = \begin{bmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{bmatrix}$

For unique solution inverse of A should exists. If matrix is non-singular matrix then inverse of matrix A exists.

$$det(A) = \begin{vmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{vmatrix} \neq 0$$

$$k \begin{vmatrix} k & 1 \\ 1 & k \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & k \end{vmatrix} + \begin{vmatrix} 1 & k \\ 1 & 1 \end{vmatrix} \neq 0$$

$$k(k^{2} - 1) - (k - 1) + (1 - k) \neq 0$$

$$k(k - 1)(k + 1) - 2(k - 1) \neq 0$$

$$(k - 1)(k^{2} + k - 2) \neq 0$$

$$(k - 1)(k^{2} + 2k - k - 2) \neq 0$$

$$(k - 1)(k + 2)(k - 1) \neq 0$$

$$(k - 1)^{2}(k + 2) \neq 0$$

$$k \neq 1, -2$$

33. What is the acute angle between the lines

represented by the equations $y - \sqrt{3}x - 5 = 0$ and $\sqrt{3}y - x + 6 = 0$? (a) 30^{0} (b) 45^{0} (c) 60^{0} (d) 75^{0} **Solution**: Slope of Line L₁: $y - \sqrt{3}x - 5 = 0$ is $m_{1} = \sqrt{3}$ Slope of Line L₁: $\sqrt{3}y - x +$

$$6 = 0$$
 is $m_2 = \frac{1}{\sqrt{3}}$

Angle between two lines is θ

$$\tan \theta = \frac{|m_1 - m_2|}{|1 + m_1 m_2|} = \left| \frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{1 + \sqrt{3} \times \frac{1}{\sqrt{3}}} \right| = \frac{1}{\sqrt{3}}$$
$$\theta = 60^0$$

34. Which of the following determinants have value zero?

1.
$$\begin{vmatrix} 41 & 1 & 5 \\ 79 & 7 & 9 \\ 29 & 5 & 3 \end{vmatrix}$$

2. $\begin{vmatrix} 1 & a & b + c \\ 1 & b & c + a \\ 1 & c & a + b \end{vmatrix}$
3. $\begin{vmatrix} 0 & c & b \\ -c & 0 & a \\ -b & -a & 0 \end{vmatrix}$

Select the correct answer using the code given below

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

Solution:

$$\begin{vmatrix} 41 & 1 & 5\\ 79 & 7 & 9\\ 29 & 5 & 3 \end{vmatrix}$$

Column - 1 =
$$\begin{cases} 41\\ 79\\ 29 \end{cases}$$

Column - 2 =
$$\begin{cases} 1\\ 7\\ 5 \end{cases}$$

Column - 3 =
$$\begin{cases} 5\\9\\3 \end{cases}$$

 $\begin{cases} 41\\79\\29 \end{cases}$ = $\begin{cases} 1\\7\\5 \end{cases}$ + 8 $\begin{cases} 5\\9\\3 \end{cases}$

$$\begin{vmatrix} 41 & 1 & 5\\ 79 & 7 & 9\\ 29 & 5 & 3 \end{vmatrix} = \begin{vmatrix} 1+8 \times 5 & 1 & 5\\ 7+8 \times 9 & 7 & 9\\ 5+8 \times 3 & 5 & 3 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 1 & 5\\ 7 & 7 & 9\\ 5 & 5 & 3 \end{vmatrix} + 8 \begin{vmatrix} 5 & 1 & 5\\ 9 & 7 & 9\\ 3 & 5 & 3 \end{vmatrix}$$
$$= 0$$
$$\begin{vmatrix} 1 & a & b+c\\ 1 & b & c+a\\ 1 & c & a+b \end{vmatrix} = \begin{vmatrix} 1 & a & a+b+c\\ 1 & b & a+b+c\\ 1 & c & a+b+c \end{vmatrix}$$
$$= (a+b+c) \begin{vmatrix} 1 & a & 1\\ 1 & b & 1\\ 1 & c & 1 \end{vmatrix}$$
$$= 0$$
$$\begin{vmatrix} 0 & c & b\\ -c & 0 & a\\ -b & -a & 0 \end{vmatrix} = -c \begin{vmatrix} -c & a\\ -b & 0 \end{vmatrix} + b \begin{vmatrix} -c & 0\\ -b & -a \end{vmatrix}$$
$$= -abc + abc = 0$$

35. Consider the following in respect of the

matrix
$$A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$
:
1. $A^2 = -A$
2. $A^3 = 4A$
Which of the above is /are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2
Solution: $A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$
 $A^2 = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$
 $= \begin{pmatrix} (-1 \times -1) + (1 \times 1) & (-1 \times 1) + (1 \times 1) \\ (1 \times -1) + (-1 \times 1) & 1 + 1 \end{pmatrix}$
 $= \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} = -2A$
 $A^3 = A^2A = -2AA = -2A^2 = -2(-2A)$
 $= 4A$

Answer: (b)

36. What is the area of the parallelogram having diagonals $3\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + 4\hat{k}$?

(a) $5\sqrt{5}$ square units

- (b) $4\sqrt{5}$ square units
- (c) $5\sqrt{3}$ square units
- (d) $15\sqrt{2}$ square units

Solution: If \vec{a} and \vec{b} are two vector representing adjacent side of parallelogram.

$$\vec{a} + \vec{b} = 3\hat{\imath} + \hat{\jmath} - 2\hat{k}$$

$$\vec{a} - \vec{b} = \hat{\imath} - 3\hat{\jmath} + 4\hat{k}$$

$$2\vec{a} = 4\hat{\imath} - 2\hat{\jmath} - 2\hat{k}$$

$$2\hat{b} = 2\hat{\imath} + 4\hat{\jmath} - 6\hat{k}$$

Area of the parallelogram = $|\vec{a} \times \vec{b}| =$

$$\begin{vmatrix} i & j & k \\ 2 & -1 & -1 \\ 1 & 2 & -3 \end{vmatrix} = \hat{\imath} \begin{vmatrix} -1 & -1 \\ 2 & -3 \end{vmatrix} - \hat{\jmath} \begin{vmatrix} 2 & -1 \\ 1 & -3 \end{vmatrix} +$$

$$k \begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix}$$

= $|5\hat{\imath} + 5\hat{\jmath} + 5\hat{k}| = 5\sqrt{3}$

37. What is a vector of unit length orthogonal to both the vectors $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} + 3\hat{j} - \hat{k}$?

(a)
$$\frac{-4\hat{\iota}+3\hat{\jmath}-\hat{k}}{\sqrt{26}}$$
 (b) $\frac{-4\hat{\iota}+3\hat{\jmath}+\hat{k}}{\sqrt{26}}$
(c) $\frac{-3\hat{\iota}+2\hat{\jmath}-\hat{k}}{\sqrt{14}}$ (d) $\frac{-3\hat{\iota}+2\hat{\jmath}+\hat{k}}{\sqrt{14}}$

Solution: $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$ and $\vec{b} = 2\hat{\imath} + 3\hat{\jmath} - \hat{k}$ Unit vector perpendicular to both vector \vec{a} and \vec{b}

$$\hat{n} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 3 & -1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 \\ 3 & -1 \end{vmatrix} \hat{i} - \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} \hat{j} + \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} \hat{k}$$

$$= -4\hat{i} + 3\hat{j} + \hat{k}$$

$$|\vec{a} \times \vec{b}| = \sqrt{4^2 + 3^2 + 1^2}$$

$$= \sqrt{16 + 9 + 1} = \sqrt{26}$$

$$\hat{n} = \frac{-4\hat{i} + 3\hat{j} + \hat{k}}{\sqrt{26}}$$

-1)

- **38**. What is the number of four-digit decimal number (<1) in which no digit is repeated?
 - (a) 3024 (b) 4536
 - (c) 5040 (d) None of the above

Solution: Number of ways

- **39.** If $y = \log_{10} x + \log_x 10 + \log_x x + \log_{10} 10$ then what is $\left(\frac{dy}{dx}\right)_{x=10}$ equal to? (a) 10 (b) 2 (c) 1 (d) 0 Solution: $y = \log_{10} x + \log_x 10 + \log_x x + \log_{10} 10$ dy dx $=\frac{d(\log_{10} x + \log_x 10 + \log_x x + \log_{10} 10)}{d(\log_{10} x + \log_x 10 + \log_x x + \log_{10} 10)}$ $\frac{dy}{dx} = \frac{d\log_{10} x}{dx} + \frac{d\log_{x} 10}{dx} + 0 + 0$ $(\log_x x = \log_{10} 10 = 1)$ $\frac{dy}{dx} = \frac{1}{x\ln 10} - \frac{(\log_{10} x)^{-2}}{x\ln 10}$ $\left(\frac{dy}{dx}\right)_{x=10} = \frac{1}{10\ln 10} - \frac{1}{10\ln 10} = 0$ **40.** Suppose ω_1 and ω_2 are two distinct cube
- roots of unity different from 1. Then what is $(\omega_1 \omega_2)^2$ equal to?
 - (a) 3 (b) 1 (c) -1 (d) -3

Solution: Cubic roots of equation $x^3 = 1$

$$(x-1)(x^2 + x + 1) = 0$$

 $(x^2 + x + 1) = 0$

Let ω_1 and ω_2 are the roots of above quadratic equation

$$\omega_1 + \omega_2 = -1$$
$$\omega_1 \omega_2 = 1$$
$$\omega_2^2 = (\omega_1 + \omega_2)^2$$

$$(\omega_1 - \omega_2)^2 = (\omega_1 + \omega_2)^2 - 4\omega_1\omega_2$$

= $(-1)^2 - 4 \times 1 = -3$

41. Three disc are thrown simultaneously. What is the probability that the sum on the three faces is at least 5?

(a) $\frac{17}{18}$	(b) $\frac{53}{54}$
(c) $\frac{103}{108}$	(d) $\frac{215}{215}$

Solution: Number of sample space = $6 \times 6 \times 6$

Let E is event of occurance of sum of three faces is atleast 5.

Let $E^{'}$ is event of occurance of sum of three faces is equal to 3 and 4.

$$x + y + z = 3$$

$$x + y + z = 4$$

$$E' = \{(1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2)\}$$

$$P(E') = \frac{4}{6 \times 6 \times 6} = \frac{1}{3 \times 3 \times 6} = \frac{1}{54}$$

$$P(E) + P(E') = 1$$

$$P(E) = \frac{53}{54}$$

42. Two independent events A and B have $P(A) = \frac{1}{3}$ and $P(B) = \frac{3}{4}$ What is the probability that exactly one of the two events A or B occurs?

(a)
$$\frac{1}{4}$$
 (b) $\frac{5}{6}$
(c) $\frac{5}{12}$ (d) $\frac{7}{12}$

Solution:

If A and B are independent events then

$$P(A \cap B) = P(A)P(B) = \frac{1}{3} \times \frac{3}{4} = \frac{1}{4}$$

The probability that exactly one of the two events A or B occurs is equal to

$$P(A \cup B) - P(A \cap B) = P(A) + P(B) - 2P(A \cap B) = \frac{1}{3} + \frac{3}{4} - \frac{2}{4} = \frac{7}{12}$$

43. A coin is tossed three times. What is the probability of getting head and tail alternately?

(a)
$$\frac{1}{8}$$
 (b) $\frac{1}{4}$
(c) $\frac{1}{2}$ (d) $\frac{3}{4}$

Solution:

Number of sample space $n(s) = 2 \times 2 \times 2 = 8$

Set A is occurance of geeting head and tail alternately = {*HTH*, *THT*}

$$P(A) = \frac{2}{8} = \frac{1}{4}$$

2016

44. What is the sum of the squares of the intercepts cut off by the circle on the axes?

(a)
$$\left(\frac{a^2+b^2}{a^2-b^2}\right)^2$$

(b) $2\left(\frac{a^2+b^2}{a-b}\right)^2$
(c) $4\left(\frac{a^2+b^2}{a-b}\right)^2$

(d) None of the above

Solution: Equation of circle is

$$x^2 + y^2 + 2gx + 2fy + c = 0$$

Circle passes through origin, (a, b) and (-b, -a).

$$0^{2} + 0^{2} + 2g \times 0 + 2f \times 0 + c = 0$$

$$c = 0$$

$$a^{2} + b^{2} + 2ga + 2fb = 0 - - - (1)$$

$$(-b)^{2} + (-a)^{2} - 2gb - 2fa = 0$$

$$a^{2} + b^{2} - 2gb - 2fa = 0 - - - (2)$$
Solving equation (1) and (2) we get,

$$g = -\frac{a^2 + b^2}{2(a-b)}$$
$$f = \frac{a^2 + b^2}{2(a-b)}$$

For x-intercept, substitute y = 0 we get,

$$x^2 + 2gx = 0$$
$$x = 0, -2g$$

For y-intercept, substitute x = 0 we get,

$$y^2 + 2fy = 0$$
$$y = 0, -2f$$

The sum of the squares of the intercepts cut off by the circle on the axes

$$= 4g^{2} + 4f^{2} = \left(\frac{a^{2} + b^{2}}{a - b}\right)^{2}$$

For the next two (2) items that follow:

Let f(x) be the greatest integer function and g(x) be the modulus function.

45. What is
$$g^{\circ}f\left(-\frac{5}{3}\right) - (f^{\circ}g)\left(-\frac{5}{3}\right)$$
 equal to?
(a) -1 (b) 0
(b) 1 (d) 2
Solution: $f(x) = [x]$ and $g(x) = |x|$
 $f\left(-\frac{5}{3}\right) = \left[-\frac{5}{3}\right] = -2$

$$g(-2) = |-2| = 2$$
$$g\left(-\frac{5}{3}\right) = \left|-\frac{5}{3}\right| = \frac{5}{3}$$
$$f\left(\frac{5}{3}\right) = \left[\frac{5}{3}\right] = 1$$
$$g^{\circ}f\left(-\frac{5}{3}\right) - (f^{\circ}g)\left(-\frac{5}{3}\right) = 2 - 1 = 1$$

46. What is
$$(f^{\circ}f)\left(-\frac{9}{5}\right) + (g^{\circ}g)(-2)$$
 equal to?
(a) -1 (b) 0
(c) 1 (d) 2
Solution: $f\left(-\frac{9}{5}\right) = \left[-\frac{9}{5}\right] = -1$
 $f(-1) = [-1] = -1$
 $g(-2) = |-2| = 2$
 $g(2) = |2| = 2$
 $(f^{\circ}f)\left(-\frac{9}{5}\right) + (g^{\circ}g)(-2) = -1 + 2 = 1$

47. What is the binary equivalent of the decimal number 0.3125?

Solution:

0.0111

$$= 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}$$

= 0 + 0.25 + 0.125 + 0.0625 = 0.4375
0.1010
= 1 × 2^{-1} + 0 × 2^{-2} + 1 × 2^{-3} + 0 × 2^{-4}
= 0.5 + 0.125 = 0.625
0.0101
= 0 × 2^{-1} + 1 × 2^{-2} + 0 × 2^{-3} + 1 × 2^{-4}
= 0.25 + 0.0625 = 0.3125
48. If A = (cos 12⁰ - cos 36⁰)(sin 96⁰ + sin 24⁰)
B = (sin 60⁰ - sin 12⁰)(cos 48⁰ - cos 72⁰)
then what is $\frac{A}{B}$ equal to ?
(a) -1 (b) 0

Solution:

$$\cos A - \cos B = 2 \sin \frac{A+B}{2} \sin \frac{B-A}{2}$$
$$\sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$$

 $\sin A - \sin B = 2\cos \frac{A+B}{2}\sin \frac{A-B}{2}$ $\cos 12^{0} - \cos 36^{0}$ $= 2\sin \frac{12^{0} + 36^{0}}{2}\sin \frac{36^{0} - 12^{0}}{2}$ $= 2\sin 24^{0} \sin 12^{0}$ $\sin 96^{0} + \sin 24^{0}$ $= 2\sin \frac{96^{0} + 24^{0}}{2}\cos \frac{96^{0} - 24^{0}}{2}$ $= 2\sin 60^{0}\cos 36^{0}$ $\sin 60^{0} - \sin 12^{0}$ $= 2\cos \frac{60^{0} + 12^{0}}{2}\sin \frac{60^{0} - 12^{0}}{2}$ $= 2\cos 36^{0}\sin 24^{0}$ $\cos 48^{0} - \cos 72^{0}$ $= 2\sin \frac{48^{0} + 72^{0}}{2}\sin \frac{72^{0} - 48^{0}}{2}$ $= 2\sin 60^{0}\sin 12^{0}$ $\frac{A}{B} = \frac{(2\sin 24^{0}\sin 12^{0}) \times (2\sin 60^{0}\cos 36^{0})}{(2\cos 36^{0}\sin 24^{0}) \times (2\sin 60^{0}\sin 12^{0})} = 1$ **49.** Consider the following statements

- **1**. If ABC is an equilateral triangle, then $3 \tan(A + B) \tan C = 1$
- **2**. If ABC is a triangle in which = 78° , $B = 66^{\circ}$, then

$$\tan\left(\frac{A}{2}+C\right)<\tan A$$

3. If ABC is any triangle, then

$$\tan\left(\frac{A+B}{2}\right)\sin\left(\frac{C}{2}\right) < \cos\left(\frac{C}{2}\right)$$

Which of the above statements is/are correct?

(a) 1 only

- (b) 2 only
- (c) 1 and 2

(d) 2 and 3

Solution: If ABC is an equilateral triangle then $\angle A = \angle B = \angle C = 60^{\circ}$

 $3 \tan(A + B) \tan C = 3 \tan(120^{\circ}) \tan 60^{\circ}$ $= -3 \tan 60^{\circ} \tan 60^{\circ} = -9$

$$\tan 120^{\circ} = \tan(180^{\circ} - 60^{\circ}) = -\tan 60^{\circ}$$

If $A = 78^{\circ}$, $B = 66^{\circ}$ then $C = 180^{\circ} - (78^{\circ} + 66^{\circ}) = 36^{\circ}$ $\tan\left(\frac{A}{2} + C\right) = \tan\left(\frac{78^{\circ}}{2} + 36^{\circ}\right) = \tan 72^{\circ}$ $\tan A = \tan 78^{\circ}$ Since $72^{\circ} < 78^{\circ}$ $\tan 72^{\circ} < \tan 78^{\circ}$ $\tan\left(\frac{A + B}{2}\right)\sin\left(\frac{C}{2}\right)$ $= \tan\left(\frac{78^{\circ} + 66^{\circ}}{2}\right)\sin\frac{36^{\circ}}{2}$ $= \tan\frac{144^{\circ}}{2}\sin 18^{\circ}$ $= \tan 72^{\circ}\sin 18^{\circ}$ $\sin 18^{\circ} = \sin 90^{\circ} - 72^{\circ} = \cos 72^{\circ}$ $\tan 72^{\circ}\sin 18^{\circ} = \sin 72^{\circ}$

$$\cos\left(\frac{C}{2}\right) = \cos 18^{\circ} = \sin 72^{\circ}$$
$$\tan\left(\frac{A+B}{2}\right)\sin\left(\frac{C}{2}\right) = \cos\left(\frac{C}{2}\right)$$

For the next three (3) items that follow:

Consider a parallelogram whose vertices are A(1, 2), B(4, y), C(x, 6) and D(3, 5) taken in order.

50. What is the value of $AC^2 - BD^2$?

(a) 25	(b) 30
(c) 36	(d) 40

Solution: Diagonal of parallelogram bisect each other.

Midpoint of AC is point P.

X-coordinate of point P

$$x_p = \frac{1+x}{2}$$

Midpoint of BD is point P.

$$x_p = \frac{4+3}{2}$$

Midpoint of BD = Midpoint of AC

7 = 1 + x

Y-coordinate of point P

$$y_p = \frac{y+5}{2}$$
$$y_p = \frac{2+6}{2}$$

Y- Coordinate of midpoint of AC = Ycoordinate of midpoint of BD.

$$y + 5 = 8$$

$$y = 3$$

A(1, 2), B(4,3), C(6, 6) and D(3, 5)
AC = $\sqrt{(1-6)^2 + (2-6)^2} = \sqrt{25+16}$
 $= \sqrt{41}$

$$BD = \sqrt{(4-3)^2 + (3-5)^2} = \sqrt{1+4} = \sqrt{5}$$

AC² - BD² = 41 - 5 = 36

- **51**. What is the point of intersection of the diagonals?
 - (a) $\left(\frac{7}{2}, 4\right)$ (b) (3, 4)
 - (c) $\left(\frac{7}{2}, 5\right)$ (d) (3, 5)

Solution: The point of intersection of the diagonal.

X-coordinate of point P = $\frac{7}{2}$

- Y- Coordinate of point P = 4
- 52. What is the area of the parallelogram?

(a) $\frac{7}{2}$ square units

(b) 4 square units

(c) $\frac{11}{2}$ square units

(d) 7 square units

Solution:

Area of the parallelogram

$$= |\vec{r}_{AB} \times \vec{r}_{AD}|$$

$$\vec{r}_{AB} = (x_B - x_A)\hat{\iota} + (y_B - y_A)\hat{j} = (4 - 1)\hat{\iota} + (y - 2)\hat{j} = 3\hat{\iota} + \hat{j}$$

$$\vec{r}_{AD} = (x_D - x_A)\hat{\iota} + (y_D - y_A)\hat{j}$$

$$= (3-1)\hat{i} + (5-2)\hat{j}$$

$$=2\hat{\imath}+3\hat{\jmath}$$

 $|\vec{r}_{AB} \times \vec{r}_{AD}| = |9\hat{\imath} \times \hat{\jmath} + 2\hat{\jmath} \times \hat{\imath}| = |7\hat{\imath} \times \hat{\jmath}| = 7$

For the next three (2) items that follow:

A plane P passes through the line of intersection of the planes 2x - y + 3z = 2, x + y - z = 1 and the point (1, 0, 1).

53. What are the direction ratios of the line of intersection of the given planes?

- (c) (2, 5, 3)
- (d) (1, 3, 5)

Solution: Direction ratios of the line of intersection of the planes 2x - y + 3z = 2,

$$x + y - z = 1.$$
Substitute z = 0

$$2x - y = 2$$
$$x + y = 1$$
$$x = 1 \text{ and } y = 0$$
Point P (1, 0, 0)
Substitute y = 0
$$2x + 3z = 2$$

$$x - z = 1$$

 $x = 1$ and $z = 0$
Point Q (1, 0, 0)

Direction ratio of line PQ

54. What is the equation of the plane P?

(a)
$$2x + 5y - 2 = 0$$

(b) $5x + 2y - 5 = 0$
(c) $x + z - 2 = 0$
(d) $2x - y - 2z = 0$
Solution: Equation of plane passing
through Planes P₁ and P₂
 $P = P_1 + \lambda P_2$
 $2x - y + 3z - 2 + \lambda(x + y - z - 1) = 0$
 $(2 + \lambda)x + (\lambda - 1)y + (3 - \lambda)z - 2 - \lambda = 0$
Plane P passes through (1, 0, 1)
 $(2 + \lambda) + (3 - \lambda) - 2 - \lambda = 0$
 $5 - 2 - \lambda = 0$
 $\lambda = 3$

5x + 2y = 5

55. If the plane P touches the sphere $x^2 + y^2 + z^2 = r^2$, then what is r equal to?

(a)
$$\frac{2}{\sqrt{29}}$$

(b) $\frac{4}{\sqrt{29}}$

(c)
$$\frac{5}{\sqrt{29}}$$

Solution: Centre of sphere $x^2 + y^2 + z^2 = r^2$ C(0, 0, 0)

Perpendicular from C on the plane P.

$$d = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$
$$d = \frac{|5x_1 + 2y_1 - 5|}{\sqrt{5^2 + 2^2}}$$
$$d = \frac{5}{\sqrt{29}}$$

For the next two (2) items that follow:

Consider the function $f(x) = |x^2 - 5x + 6|$ 56. What is f'(4) equal to ? (a) -4 (b) -3

(a)
$$-4$$
 (b) -3
(c) 3 (d) 2
Solution: $f(x) = |x^2 - 5x + 6|$
 $x^2 - 5x + 6 = (x - 3)(x - 2)$
 $f(x) > 0$ if $x > 3$ and $x < 2$
 $f(x) < 0$ if $2 < x < 3$
 $f(x) = x^2 - 5x + 6$ $x < 2$
 $= -(x^2 - 5x + 6)$ $2 < x < 3$
 $f'(x) = 2x - 5, x > 3$
 $f'(4) = 3$
57. What is $f'(2.5)$ equal to ?
(a) -3 (b) -2

(c) 0

Solution:

$$f(x) = -(x^2 - 5x + 6) 2 < x < 3$$
$$f'(x) = -2x + 5$$
$$f'(2.5) = 0$$

(d) 2

58. If

$$\int_{-2}^{5} f(x) dx = 4 \text{ and}$$

$$\int_{0}^{5} \{1 + f(x)\} dx =$$
7 then what is $\int_{-2}^{0} f(x) dx$ equal to?
(a) -3 (b) 2
(c) 3 (d) 5
Solution:

$$\int_{-2}^{5} f(x) dx = 4$$

$$\int_{-2}^{0} f(x) dx + \int_{0}^{5} f(x) = 4$$

$$\int_{0}^{5} \{1 + f(x)\} dx = 7$$

$$\int_{0}^{5} dx + \int_{0}^{5} f(x) dx = 7$$

$$\int_{0}^{5} f(x) dx = 7 - 5 = 2$$

$$\int_{-2}^{0} f(x) dx + 2 = 4$$

$$\int_{-2}^{0} f(x) dx = 2$$

For the next two (2) items that follow:

Let z be a complex number satisfying

$$\left|\frac{z-4}{z-8}\right| = 1$$

and

$$\left|\frac{z}{z-2}\right| = \frac{3}{2}$$

59. What is |z| equal to?

Solution:

$$\left|\frac{z-4}{z-8}\right| = 1$$

(x-4)² + y² = (x - 8)² + y²
(x - 4 + x - 8)(x - 4 - x + 8) = 0
(2x - 12)4 = 0
x = 6
 $\left|\frac{z}{z-2}\right| = \frac{3}{2}$

	$\sqrt{x^2 + y^2}$ 3
	$\frac{\sqrt{x^2 + y^2}}{(x-2)^2 + y^2} = \frac{3}{2}$
_	$\frac{x^2 + y^2}{x - 2)^2 + y^2} = \frac{9}{4}$
($\frac{6^2 + y^2}{6 - 2)^2 + y^2} = \frac{9}{4}$
	y = 0
	z = x + iy = 6
	z = 6
60 . What is $\left \frac{z-6}{z+6}\right $	equal to?
(a) 3	(b) 2
(c) 1	(d) 0
Solution:	
$\left \frac{Z}{Z}\right $	$\frac{-6}{+6} = \left \frac{6-6}{6+6} \right = 0$
For the next tw	o (2) items that follow:
Given that lo	$g_x y, \log_z x, \log_y z$ are in
$xyz = 64$ and x^3	3 , y 3 , z 3 are in AP.
61. Which one of the following is correct?	
x, y and z are	
(a) in AP only	
(b) in GP only	
(c) in both AP and GP	
(d) neither in AP nor in GP	
Solution : $\log_x y$, $\log_z x$, $\log_y z$ are in GP	
$\frac{\log_z x}{\log_x y} = \frac{\log_y}{\log_z}$	$\frac{z}{x}$
$(\log_z x)^2 = \log_x y \log_y z = \log_x z$	
$\log_z x = \frac{1}{\log_x z}$	
$(\log_z x)^2 = \frac{1}{\log_z x}$	
$(\log_z x)^3 = 1$	

$$\log_z x = 1 = \log_z z$$

$$z = x$$

62. Which one of the following is correct?

xy, yz and zx are

- (a) in AP only
- (b) in GP only
- (c) in both AP and GP

For the next two (2) items that follow: Given that $\tan \alpha$ and $\tan \beta$ are the roots of the equation $x^2 + bx + c = 0$ with $b \neq 0$. 63. What is $\tan(\alpha + \beta)$ equal to? (a) b(c - 1) (b) c(b - 1)(c) $c(b - 1)^{-1}$ (d) $b(c - 1)^{-1}$ Solution: If $\tan \alpha$ and $\tan \beta$ are the roots of the equation $x^2 + bx + c = 0$ then $\tan \alpha + \tan \beta = -b$ $\tan \alpha \tan \beta = c$ $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = -b(1 - c)^{-1}$ $= b(c - 1)^{-1}$

64. What is $sin(\alpha + \beta) sec \alpha sec \beta$ equal to?

(a) b	(b) –b
(c) c	(d) –c

(d) neither in AP nor in GP

Solution:

in GP,

 $\sin(\alpha + \beta) \sec \alpha \sec \beta$ $= \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta}$ $= \tan \alpha + \tan \beta$ = -b

For the next two (2) items that follow:

Consider the curves

$$y = |x - 1|$$
 and $|x| = 2$

65. What is/are the point(s) of intersection of the curves?
(a) (-2,3) only
(b) (2,1) only
(c) (-2,3) and (2,1)
(d) Neither (-2,3) nor (2,1)

Solution:
$$y = |x - 1|$$
 and

the curves and x-axis?

$$|x| = 2$$
$$x = \pm 2$$
$$y = |2 - 1| = 1$$

y = |-2 - 1| = 3

Point of intersection are (2,1) and (-2, 3) 66. What is the area of the region bounded by

- (a) 3 square units
- (b) 3 square units
- (c) 5 square units
- (d) 6 square units

Solution:

Area of the region bounded by the curves and x-axis

Area =
$$\left|\frac{1}{2} \times (-2 - 1) \times 3\right| + \left|\frac{1}{2} \times (2 - 1) \times 1\right|$$

= $\frac{9 + 1}{2} = 5$

For the next two (2) items that follow:

Consider the function

$$f(x) = \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$$

where p is a constant.

67. What is the value of f'(0)?

(a)
$$p^3$$
 (b) $3p^3$
(c) $6p^3$ (d) $-6p^3$

Solution:

$$f(x) = \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$$
$$f(x) = x^3 \begin{vmatrix} -1 & 0 \\ p^2 & p^3 \end{vmatrix} - \sin x \begin{vmatrix} 6 & 0 \\ p & p^3 \end{vmatrix}$$
$$+ \cos x \begin{vmatrix} 6 & -1 \\ p & p^2 \end{vmatrix}$$
$$f'(x) = 3x^2 \begin{vmatrix} -1 & 0 \\ p^2 & p^3 \end{vmatrix} - \cos x \begin{vmatrix} 6 & 0 \\ p & p^3 \end{vmatrix}$$
$$- \sin x \begin{vmatrix} 6 & -1 \\ p & p^2 \end{vmatrix}$$

 $f'(0) = -6p^3$

68. What is the value of p for which f''(0) = 0?

(a)
$$-\frac{1}{6} or 0$$

(b) $-1 \text{ or } 0$
(c) $-\frac{1}{6} or 1$
(d) $-1 \text{ or } 1$
Solution:
 $f''(x) = 6x \begin{vmatrix} -1 & 0 \\ p^2 & p^3 \end{vmatrix} + \sin x \begin{vmatrix} 6 & 0 \\ p & p^3 \end{vmatrix} - \cos x \begin{vmatrix} 6 & -1 \\ p & p^2 \end{vmatrix}$

$$f''(0) = -(6p^2 + p) = -p(1 + 6p) = 0$$
$$p = 0, -\frac{1}{6}$$

For the next two (2) items that follow:

Consider the function

$$f(x) = \frac{a^{[x]+x} - 1}{[x]+x}$$

Where [.] denotes the greatest integer function.

69. What is $\lim_{x\to 0^+} f(x)$ equal to ?

- (a) 1
- (b) ln *a*
- (c) $1 a^{-1}$
- (d) Limit does not exist

Solution:
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{a^{x-1}}{x} = \ln a$$

- **70**. What is $\lim_{x\to 0^-} f(x)$ equal to?
 - (a) 1
 - (b) ln a
 - (c) $1 a^{-1}$
 - (d) Limit does not exist

Solution: $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{a^{[x]+x}-1}{[x]+x} =$ $\lim_{x \to 0^{-}} \frac{a^{x-1}-1}{x-1} = \frac{a^{-1}-1}{0-1} = 1 - a^{-1}$