1. Suppose ω is a cube root of unity with $\neq 1$. Suppose P and Q are the points on the complex plane defined by ω and ω^{2}. If O is the origin, then what is the angle between OP and OQ ?
(a) 60°
(b) 90°
(c) 120°
(d) 150°

Solution:
Cubic roots of unity is
$x^{3}=1$
$x^{3}-1=0$
$(x-1)\left(x^{2}+x+1\right)=0$
$x-1=0$
$x=1$
$x^{2}+x+1=0$
$x=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$
$\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$
$\omega^{2}=-\frac{1}{2}-\frac{\sqrt{3}}{2} i$
Angle made by ω from x-axis is 120° and Angle made by ω^{2} from x-axis is 240°. Therefore angle made by OP and OQ is 120°.

Answer: (c)
2. If $x^{2}-p x+4>0$ for all real values of x , then which one of the following is correct?
(a) $|p|<4$
(b) $|p| \leq 4$
(c) $|p|>4$
(d) $|p| \geq 4$

Solution:
$x^{2}-p x+4>0$

$$
\left(x-\frac{p}{2}\right)^{2}+\frac{16-p^{2}}{4}>0
$$

IF $16-p^{2}>0$ then above quadratic equation is always positive for all values of x.

$$
\begin{gathered}
16>p^{2} \\
\sqrt{16}>\sqrt{p^{2}} \\
4>|p|
\end{gathered}
$$

Answer: (a)

3. If $z=x+i y=\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)^{-25}$, where $i=$ $\sqrt{-1}$, then what is the fundamental amplitude of $\frac{z-\sqrt{2}}{z-i \sqrt{2}}$?
(a) π
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{4}$

Solution:

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}=r e^{i \theta} \\
& r=\sqrt{x^{2}+y^{2}}=\sqrt{\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(-\frac{1}{\sqrt{2}}\right)^{2}}=1 \\
& \tan \theta=\frac{y}{x}=-\frac{1 / \sqrt{2}}{1 / \sqrt{2}}=-1 \\
& \theta=-\frac{\pi}{4} \\
& \begin{array}{r}
\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}=1 e^{-i \frac{\pi}{4}} \\
\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)^{-25}=e^{-i \frac{\pi}{4} x-25}=e^{i \frac{25 \pi}{4}} \\
=\cos \left(\frac{25 \pi}{4}\right)+i \sin \left(\frac{25 \pi}{4}\right)
\end{array}
\end{aligned}
$$

$$
\cos \left(\frac{25 \pi}{4}\right)=\cos \left(6 \pi+\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}
$$

$$
\sin \left(\frac{25 \pi}{4}\right)=\sin \left(6 \pi+\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}
$$

$$
\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)^{-25}=\frac{1+i}{\sqrt{2}}
$$

$$
\frac{z-\sqrt{2}}{z-i \sqrt{2}}=\frac{\frac{1+i}{\sqrt{2}}-\sqrt{2}}{\frac{1+i}{\sqrt{2}}-i \sqrt{2}}=\frac{\left(\frac{1}{\sqrt{2}}-\sqrt{2}\right)+\frac{i}{\sqrt{2}}}{\left(\frac{1}{\sqrt{2}}\right)+i\left(\frac{1}{\sqrt{2}}-\sqrt{2}\right)}
$$

$$
\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)
$$

$$
\arg \left(\frac{z-\sqrt{2}}{z-i \sqrt{2}}\right)=\arg \left(\left(\frac{1}{\sqrt{2}}-\sqrt{2}\right)+\frac{i}{\sqrt{2}}\right)
$$

$$
-\arg \left(\left(\frac{1}{\sqrt{2}}\right)+i\left(\frac{1}{\sqrt{2}}-\sqrt{2}\right)\right)
$$

$$
\left.\begin{array}{l}
\begin{array}{rl}
\arg \left(\left(\frac{1}{\sqrt{2}}-\sqrt{2}\right)\right. & \left.+\frac{i}{\sqrt{2}}\right) \\
& =\tan ^{-1} \frac{y}{x}=\tan ^{-1} \frac{1 / \sqrt{2}}{-1 / \sqrt{2}} \\
& =\tan ^{-1}(-1)=-\frac{\pi}{4}
\end{array} \\
\begin{array}{rl}
\arg \left(\left(\frac{1}{\sqrt{2}}\right)+i\left(\frac{1}{\sqrt{2}}-\sqrt{2}\right)\right)
\end{array} \\
=\tan ^{-1} \frac{y}{x}=\tan ^{-1} \frac{-1 / \sqrt{2}}{1 / \sqrt{2}} \\
\end{array} \quad=\tan ^{-1}(-1)=-\frac{\pi}{4}\right]
$$

Answer: (*)

4. What is the range of the function $y=\frac{x^{2}}{1+x^{2}}$ where $\in R$?
(a) $[0,1)$
(b) $(0,1)$
(c) $(0,1]$
(d) $[0,1]$

Solution:

$$
y=\frac{x^{2}}{1+x^{2}}
$$

Function y is even function $f(-x)=f(x)$.
Function $y=1-\frac{1}{1+x^{2}}$
Range of function is $[0,1)$.
Answer: (a)
5. A straight line intersects x and y axes. at P and Q respectively. If $(3,5)$ is the middle point of $P Q$, then what is the area of the triangle OPQ?
(a) 12 square units
(b) 15 square units
(c) 20 square units
(d) 30 square units

Solution: If P is x-intercept and Q is y intercept of line L. Co-ordinate of point $P(a, 0)$ and $\mathrm{Q}(0, b)$.
Coordinate of Midpoint of PQ is $\left(\frac{a}{2}, \frac{b}{2}\right)$.
$O P=a=6$ and $O Q=b=10$

Area of right angles triangle $\mathrm{OPQ}=\frac{1}{2} \times O P \times$ $O Q=\frac{1}{2} \times 6 \times 10=30$ square units.
Answer: (d)
6. If a circle of radius b units with center at (0 ,
b) touches the line $y=x-\sqrt{2}$, then what is the value of b ?
(a) $2+\sqrt{2}$
(b) $2-\sqrt{2}$
(c) $2 \sqrt{2}$
(d) $\sqrt{2}$

Solution:

Perpendicular distance from the centre of circle to line which touches the circle is equal to radius of the circle.

$$
d=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}
$$

Given $d=b, x_{1}=0$ and $y_{1}=b$

$$
\begin{aligned}
& b=\frac{\left|x_{1}-y_{1}-\sqrt{2}\right|}{\sqrt{1+1}}=\frac{|0-b-\sqrt{2}|}{\sqrt{2}}=\frac{b+\sqrt{2}}{\sqrt{2}} \\
& \sqrt{2} b=b+\sqrt{2} \\
& b=\frac{\sqrt{2}}{\sqrt{2}-1}=2+\sqrt{2}
\end{aligned}
$$

Answer: (a)

Consider the function $f(\theta)=4\left(\sin ^{2} \theta+\right.$ $\cos ^{4} \theta$)
7. What is the maximum value of the function
$\mathrm{f}(\theta)$?
(a) 1
(b) 2
(c) 3
(d) 4

Solution:

$$
\begin{aligned}
\mathrm{f}(\theta) & =4\left(\sin ^{2} \theta+\cos ^{4} \theta\right) \\
& =4\left(\cos ^{4} \theta-\cos ^{2} \theta+1\right)
\end{aligned}
$$

Let $\cos ^{2} \theta=\mathrm{x}$

$$
\begin{aligned}
& f(x)=4\left(x^{2}-x+1\right) \\
& f(x)=4\left(\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}\right)
\end{aligned}
$$

Maximum value of $f(x)$ when $\left(x-\frac{1}{2}\right)^{2}$ is maximum. Value of x lies between 0 to 1 . Maximum value of $\left(x-\frac{1}{2}\right)^{2}$ occur at $x=0$ and x $=1$.

$$
\begin{gathered}
f(x)=4\left(\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}\right)=4\left(\left(1-\frac{1}{2}\right)^{2}+\frac{3}{4}\right) \\
=4
\end{gathered}
$$

Answer: (d)
8. What is the minimum value of the function $f(\theta)$?
(a) 0
(b) 1
(c) 2
(d) 3

Solution:

$f(x)=4\left(\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}\right)$
Minimum value of $f(x)$ occur at $x=1 / 2$.
Minimum value of $f(x)=3$
Answer: (d)
9. Consider the following statements

1. $f(\theta)=2$ has no solution.
2. $f(\theta)=\frac{7}{2}$ has a solution.

Which of the above statements is/are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2

Solution:

$$
\begin{aligned}
f(\theta) & =4\left(\sin ^{2} \theta+\cos ^{4} \theta\right) \\
& =4\left(\cos ^{4} \theta-\cos ^{2} \theta+1\right)
\end{aligned}
$$

Since $f(\theta)$ is continuous function. Minimum value of $f(\theta)$ is 3 and maximum value of $f(\theta)$ is 4 .
So $\mathrm{f}(\theta)=2$ has no solution and $f(\theta)=\frac{7}{2}$ has more than one solution.
Answer: (a)
For the next two (2) items that follow:
Consider the curves $f(x)=x|x|-1$ and $g(x)= \begin{cases}\frac{3 x}{2}, & x>0 \\ 2 x, & x \leq 0\end{cases}$
10. Where do the curves intersect?
(a) At $(2,3)$ only
(b) At $(-1,-2)$ only
(c) At $(2,3)$ and (-1, -2)
(d) Neither at $(2,3)$ not at $(-1,-2)$

Solution:

$$
\begin{gathered}
f(x)=g(x) \\
x|x|-1=\frac{3 x}{2} \\
x^{2}-1-\frac{3 x}{2}=0 \\
2 x^{2}-3 x-2=0 \\
x=2,-\frac{1}{2}
\end{gathered}
$$

But $x>2$ therefore $x=2, y=3$

$$
\begin{gathered}
f(x)=g(x) \\
x|x|-1=2 x \\
-x^{2}-1=2 x \\
x^{2}+2 x+1=0 \\
x=-1 \\
y=-2
\end{gathered}
$$

Answer:(c)

11. What is the area bounded by the curves?
(a) $\frac{17}{6}$ square units
(b) $\frac{8}{3}$ square units
(c) 2 square units
(d) $\frac{1}{3}$ square units

Solution: Area $=\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$

$$
I=\left|\int_{-1}^{0}\left(-x^{2}-1-2 x\right) d x\right|+\left|\int_{0}^{2}\left(x^{2}-1-\frac{3 x}{2}\right) d x\right|
$$

$\int_{-1}^{0}\left(-x^{2}-1-2 x\right) d x$
$=-\frac{x^{3}}{3}-x-\left.\frac{2 x^{2}}{2}\right|_{-1} ^{0}$
$=-\frac{0^{3}}{3}-0-0^{2}+\frac{(-1)^{3}}{3}+(-1)+(-1)^{2}=-\frac{1}{3}$
$\int_{0}^{2}\left(x^{2}-1-\frac{3 x}{2}\right) d x$
$=\frac{x^{3}}{3}-x-\left.\frac{3 x^{2}}{4}\right|_{0} ^{2}$
$=\frac{8}{3}-2-3$
$=\frac{8-15}{3}=-\frac{7}{3}$
$I=\frac{1}{3}+\frac{7}{3}=\frac{8}{3}$

For the next two (2) items that follow:
Consider the functions $f(x)=x g(x)$ and $g(x)=\left[\frac{1}{x}\right]$ where [.] is the greatest integer function.
12. What is

$$
\int_{\frac{1}{3}}^{\frac{1}{2}} g(x) d x
$$

equal to ?
(a) $\frac{1}{6}$
(b) $\frac{1}{3}$
(c) $\frac{5}{18}$
(d) $\frac{5}{36}$

Solution: $g(x)=\left[\frac{1}{x}\right]$

$$
\begin{gathered}
\frac{1}{3} \leq x \leq \frac{1}{2} \\
2 \leq \frac{1}{x} \leq 3 \\
g(x)=2 \quad, 2 \leq \frac{1}{x}<3 \\
\int_{\frac{1}{3}}^{\frac{1}{2}} g(x) d x=\int_{\frac{1}{3}}^{\frac{1}{2}} 2 d x=\frac{1}{3}
\end{gathered}
$$

13. What is

$$
\int_{\frac{1}{3}}^{1} f(x) d x
$$

(a) $\frac{37}{72}$
(b) $\frac{2}{3}$
(c) $\frac{17}{72}$
(d) $\frac{37}{144}$

Solution:

$$
\begin{array}{rl}
\int_{\frac{1}{3}}^{1} f(x) d x=\int_{\frac{1}{3}}^{1} & x g(x) d x \\
& =\int_{\frac{1}{3}}^{\frac{1}{2}} 2 x d x+\int_{\frac{1}{2}}^{1} x d x \\
& =\left.x^{2}\right|_{\frac{1}{3}} ^{\frac{1}{2}}+\left.\frac{x^{2}}{2}\right|_{\frac{1}{2}} ^{1}=\frac{37}{72}
\end{array}
$$

For the next five (5) items that follow:
Consider the function $f(x)=|x-1|+x^{2}$
14. Which one of the following statements is correct?
(a) $f(x)$ is continuous but not differentiable at $x=0$
(b) $f(x)$ is continuous but not differentiable at $x=1$
(c) $f(x)$ is differentiable at $x=1$
(d) $f(x)$ is not differentiable at $x=0$ and $x=1$

Solution:

$$
\begin{aligned}
f(x) & =x^{2}-x+1 \quad x<1 \\
& =x^{2}+x-1 \quad x \geq 1
\end{aligned}
$$

$$
\begin{gathered}
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{2}-x+1=1 \\
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} x^{2}+x-1=1 \\
f(1)=1 \\
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)
\end{gathered}
$$

$f(x)$ is continuous function

$$
\begin{aligned}
f^{\prime}(x) & =2 x-1, \quad x<1 \\
& =2 x+1, x \geq 1 \\
& f^{\prime}\left(1^{-}\right)=1 \\
& f^{\prime}\left(1^{+}\right)=3
\end{aligned}
$$

$f(x)$ is not differentiable at $\mathrm{x}=1$.
Answer: (b)
15. What is the area of the region bounded by x-axis, the curve $y=f(x)$ and the two ordiantes $x=\frac{1}{2}$ and $x=1$?
(a) $\frac{5}{12}$ square unit
(b) $\frac{5}{6}$ square unit
(c) $\frac{7}{6}$ square units
(d) 2 square units

Solution:

$y=|x-1|+x^{2}$
If $\frac{1}{2} \leq x \leq 1$
$y=x^{2}-x+1$
Area
$=\int_{\frac{1}{2}}^{1} x^{2}-x+1 d x$ where $x \in R$.

$$
\begin{aligned}
& =\frac{x^{3}}{3}-\frac{x^{2}}{2}+\left.x\right|_{\frac{1}{2}} ^{1} \\
& =\frac{1}{3}-\frac{1}{2}+1-\frac{1}{24}+\frac{1}{8}-\frac{1}{2}=\frac{5}{12}
\end{aligned}
$$

Answer: (a)
16. What is the area of the region bounded by x-axis, the curve $y=f(x)$ and the two ordinates $x=1$ and $x=\frac{3}{2}$?
(a) $\frac{5}{12}$ square unit
(b) $\frac{7}{12}$ square unit
(c) $\frac{2}{3}$ square units
(d) $\frac{11}{12}$ square units

Solution: if $1 \leq x \leq \frac{3}{2}$
$f(x)=x-1+x^{2}=x^{2}+x-1$
Area $=\int_{1}^{3 / 2} x^{2}+x-1 d x=\frac{11}{12}$
Answer: (d)

For the next two (2) items that follow:
Consider the lines
$y=3 x, y=6 x$ and $y=9$
17. What is the area of the triangle formed by these lines?
(a) $\frac{27}{4}$ square units
(b) $\frac{27}{2}$ square units
(c) $\frac{19}{4}$ square units
(d) $\frac{19}{2}$ square units

Solution:

Vertex of triangle are $A(0,0), B(3,9)$ and $C(3 / 2,9)$.

Area enclosed by lines $y=3 x, y=6 x$ and $y=9$
$=\frac{1}{2} \times 9 \times 3-\frac{1}{2} \times 9 \times \frac{3}{2}=\frac{27}{4}$
Answer: (a)
18. The centroid of the triangle is at which one of the following points?
(a) $(3,6)$
(b) $\left(\frac{3}{2}, 6\right)$
(c) $(3,3)$
(d) $\left(\frac{3}{2}, 9\right)$

Solution:

Vertex of triangle are $A(0,0), B(3,9)$ and $C(3 / 2,9)$.
Centroid of the triangle G

$$
\begin{gathered}
=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right) \equiv\left(\frac{0+3+\frac{3}{2}}{3}, \frac{0+9+9}{3}\right) \\
=\left(\frac{3}{2}, 6\right)
\end{gathered}
$$

Answer: (b)

For the next two (2) items that follow:

Consider the two circles

$$
\begin{aligned}
& (x-1)^{2}+(y-3)^{2}=r^{2} \text { and } \\
& \quad x^{2}+y^{2}-8 x+2 y+8=0
\end{aligned}
$$

19.What is the distance between the centres of the two circles?
(a) 5 units
(b) 6 units
(c) 8 units
(d) 10 units

Solution: The equation of the two circles are $(x-1)^{2}+(y-3)^{2}=r^{2}$ and

$$
x^{2}+y^{2}-8 x+2 y+8=0
$$

$\mathrm{C}_{1} \equiv(1,3)$ and $C_{2} \equiv(4,-1)$
Distance between the circles is

$$
=\sqrt{(4-1)^{2}+(-1-3)^{2}}=\sqrt{9+16}=5
$$

20. If the circles intersect at two distinct points, then which one of the following is correct?
(a) $r=1$
(b) $1<r<2$
(c) $r=2$
(d) $2<r<8$

Solution: radius of circle-2 $\mathrm{R}_{2}=3$
if $r=2$ two circles touches internally and if r $=8$ two circles touches externally.

Two circles intersect at two distinct point when r lies between 2 to 8 .

For the next two (2) items that follow:

Consider the two lines $x+y+1=0$ and $3 x+2 y+1=0$
21. What is the equation of the line passing through the point of intersection of the given lines and parallel to x-axis?
(a) $y+1=0$
(b) $y-1=0$
(c) $y-2=0$
(d) $y+2=0$

Solution:

Intersection of lines $x+y+1=0$ and $3 x+2 y+1=0$ is $(1,-2)$

Line passing through point of intersection and parallel to x-axis is $y=-2$.
Equation of line is $y+2=0$
Answer: (d)
22. What is the equation of the line passing through the point of intersection of the given lines and parallel to y-axis?
(a) $x+1=0$
(b) $x-1=0$
(c) $x-2=0$
(d) $x+2=0$

Solution:

Intersection of lines $x+y+1=0$ and $3 x+2 y+1=0$ is $(1,-2)$

Line passing through point of intersection and parallel to y-axis is $x=1$.

Equation of line is $x-1=0$
Answer: (b)
For the next three (2) items that follow:
A plane P passes through the line of intersection of the planes $2 x-y+3 z=2$, $x+y-z=1$ and the point $(1,0,1)$.
23. What are the direction ratios of the line of intersection of the given planes?
(a) $(2,-5,-3)$
(b) $(1,-5,-3)$
(c) $(2,5,3)$
(d) $(1,3,5)$

Solution: Let direction ratio of line is (a, b, c)

Equation of line passing through intersection of the planes $2 x-y+3 z=2$, $x+y-z=1$

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

For the next two (2) items that follow:
Let \hat{a}, \hat{b} be two unit vectors and θ be the angle between them.
24. What is $\cos \left(\frac{\theta}{2}\right)$ equal to?
(a) $\frac{|\hat{a}-\hat{b}|}{2}$
(b) $\frac{|\hat{a}+\hat{b}|}{2}$
(c) $\frac{|\hat{a}-\hat{b}|}{4}$
(d) $\frac{|\hat{a}+\hat{b}|}{4}$

Solution: if \hat{a}, \hat{b} be two unit vectors

$$
|\hat{a}|=|\hat{b}|=1
$$

Dot product of vectors \hat{a}, \hat{b} is
$\hat{a} . \hat{b}=|\hat{a}||\hat{b}| \cos \theta=1 \times 1 \times \cos \theta$

$$
|\hat{a}+\hat{b}|^{2}=(\hat{a}+\hat{b}) \cdot(\hat{a}+\hat{b})
$$

$=|\hat{a}|^{2}+|\hat{b}|^{2}+2 \hat{a} . \hat{b}=2(1+\hat{a} . \hat{b})$

$$
\begin{aligned}
& =2(1+\cos \theta)=4 \cos ^{2} \frac{\theta}{2} \\
& \cos \frac{\theta}{2}=\frac{|\hat{a}+\hat{b}|}{2}
\end{aligned}
$$

Answer: (b)
25. What is $\sin \left(\frac{\theta}{2}\right)$ equal to?
(a) $\frac{|\hat{a}-\hat{b}|}{2}$
(b) $\frac{|\hat{a}+\hat{b}|}{2}$
(c) $\frac{|\hat{a}-\hat{b}|}{4}$
(d) $\frac{|\hat{a}+\hat{b}|}{4}$

Solution:

$|\hat{a}-\hat{b}|^{2}$
$=(\hat{a}-\hat{b}) \cdot(\hat{a}-\hat{b})$
$=|\hat{a}|^{2}+|\hat{b}|^{2}-2 \hat{a} . \hat{b}$
$=2(1-\hat{a} . \hat{b})$
$=2(1-\cos \theta)$
$=4 \sin ^{2} \frac{\theta}{2}$
$\sin \frac{\theta}{2}=\frac{|\hat{a}-\hat{b}|}{2}$
Answer: (b)
26. What is

$$
\int_{-2}^{2} x d x-\int_{-2}^{2}[x] d x
$$

equal to, where [.] is the greatest integer function?
(a) 0
(b) 1
(c) 2
(d) 4

Solution: $\int_{-2}^{2} x d x=0$
$\int_{-2}^{2}[x] d x=\int_{-2}^{-1}[x] d x+\int_{-1}^{0}[x] d x$
$+\int_{0}^{1}[x] d x+\int_{1}^{2}[x] d x$
$\int_{-2}^{-1}[x] d x=\int_{-2}^{-1}(-2) d x=-2$
$\int_{-1}^{0}[x] d x=\int_{-2}^{-1}(-1) d x=-1$
$\int_{0}^{1}[x] d x=\int_{0}^{1}(0) d x=0$
$\int_{1}^{2}[x] d x=\int_{1}^{2} 1 d x=1$
$\int_{-2}^{2}[x] d x=-2-1+0+1=-2$
$\int_{-2}^{2} x d x-\int_{-2}^{2}[x] d x=2$
27. What is $\lim _{x \rightarrow 0} e^{-\frac{1}{x^{2}}}$ equal to?
(a) 0
(b) 1
(c) -1
(d) Limit does not exist.

Solution: $\lim _{x \rightarrow 0} e^{-\frac{1}{x^{2}}}=e^{-\infty}=\frac{1}{e^{\infty}}$

$$
\begin{aligned}
& =\frac{1}{\infty} \\
& =0
\end{aligned}
$$

Answer: (a)
28. What is $\int_{0}^{4 \pi}|\cos x| d x$ equal to?
(a) 0
(b) 2
(c) 4
(d) 8

Solution: $\boldsymbol{I}=\int_{0}^{4 \pi}|\cos x| d x$
$|\cos x|$ is a periodic function with period π
$\boldsymbol{I}=\int_{0}^{4 \pi}|\cos x| d x=\mathbf{4} \int_{0}^{\pi}|\cos x| d x$

$$
\begin{aligned}
& =4 \int_{0}^{\frac{\pi}{2}} \cos x d x+4 \int_{\frac{\pi}{2}}^{\pi}-\cos x d x \\
& =8
\end{aligned}
$$

Answer: (d)
29. $(a, 2 b)$ is the mid-point of the line segment joining the points $(10,-6)$ and $(k, 4)$. If $a-2 b=7$, then what is the value of k ?
(a) 2
(b) 3
(c) 4
(b) 5

Solution: $a=\frac{10+k}{2} \quad 2 b=\frac{-6+4}{2}=-1$
$a-2 b=7$
$a+1=7$
$a=6$
$\frac{10+k}{2}=6$
$k=12-10=2$
Answer: (a)
30. if $\log _{a}(a b)=x$, then what is $\log _{b}(a b)$ equal to?
(a) $\frac{1}{x}$
(b) $\frac{x}{x+1}$
(c) $\frac{x}{1-x}$
(d) $\frac{x}{x-1}$

Solution: $\log _{a}(a b)=x$
$\log _{a} a+\log _{a} b=x$
$1+\log _{a} b=x$
$\log _{b} a=\frac{1}{\log _{a} b}=\frac{1}{x-1}$
$\log _{b}(a b)=\log _{b} a+\log _{b} b$
$=\log _{b} a+1=\frac{1}{x-1}+1=\frac{x}{x-1}$
Answer: (d)
31. What is the number of different messages that can be represented by three 0 's and two 1 s ?
(a) 10
(b) 9
(c) 8
(d) 7

Solution: Number of ways $=\frac{n!}{p!q!}$
Total number of numbers are 5.
0 are 3 times and 1 is two times.
$p=3$ and $q=2$
$\mathrm{n}=5$
Number of ways $=\frac{5!}{3!2!}=\frac{5 \times 4}{2}=10$
32. The system of linear equations $k x+y+$ $z=1, x+k y+z=1$ and $x+y+k z=1$ has a unique solution under which one of the following conditions?
(a) $k \neq 1$ and $k \neq-2$
(b) $k \neq 1$ and $k \neq 2$
(c) $k \neq-1$ and $k \neq-2$
(d) $k \neq-1$ and $k \neq 2$

Solution: System of linear equation are
$k x+y+z=1$
$x+k y+z=1$
$x+y+k z=1$
Simultaneous equation can be written in form of $A X=B$
$\mathrm{A}=\left[\begin{array}{lll}k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k\end{array}\right]$
For unique solution inverse of A should exists. If matrix is non-singular matrix then inverse of matrix A exists.
$\operatorname{det}(A)=\left|\begin{array}{lll}k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k\end{array}\right| \neq 0$
$k\left|\begin{array}{cc}k & 1 \\ 1 & k\end{array}\right|-\left|\begin{array}{ll}1 & 1 \\ 1 & k\end{array}\right|+\left|\begin{array}{cc}1 & k \\ 1 & 1\end{array}\right| \neq 0$
$k\left(k^{2}-1\right)-(k-1)+(1-k) \neq 0$
$k(k-1)(k+1)-2(k-1) \neq 0$
$(k-1)\left(k^{2}+k-2\right) \neq 0$
$(k-1)\left(k^{2}+2 k-k-2\right) \neq 0$
$(k-1)(k+2)(k-1) \neq 0$
$(k-1)^{2}(k+2) \neq 0$
$k \neq 1,-2$
33. What is the acute angle between the lines represented by the equations $y-\sqrt{3} x-$ $5=0$ and $\sqrt{3} y-x+6=0$?
(a) 30°
(b) 45°
(c) 60°
(d) 75^{0}

Solution: Slope of Line $L_{1}: y-\sqrt{3} x-5=0$
is $m_{1}=\sqrt{3}$

Slope of Line $\mathrm{L}_{1}: \sqrt{3} y-x+$
$6=0$ is $m_{2}=\frac{1}{\sqrt{3}}$
Angle between two lines is θ
$\tan \theta=\frac{\left|m_{1}-m_{2}\right|}{\left|1+m_{1} m_{2}\right|}=\left|\frac{\sqrt{3}-\frac{1}{\sqrt{3}}}{1+\sqrt{3} \times \frac{1}{\sqrt{3}}}\right|=\frac{1}{\sqrt{3}}$

$$
\theta=60^{\circ}
$$

34. Which of the following determinants have value zero?
35. $\left|\begin{array}{lll}41 & 1 & 5 \\ 79 & 7 & 9 \\ 29 & 5 & 3\end{array}\right|$
36. $\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|$
37. $\left|\begin{array}{ccc}0 & c & b \\ -c & 0 & a \\ -b & -a & 0\end{array}\right|$

Select the correct answer using the code given below
(a) 1 and 2 only
(b) 2 and 3 only
(c) 1 and 3 only
(d) 1, 2 and 3

Solution:

$\left|\begin{array}{lll}41 & 1 & 5 \\ 79 & 7 & 9 \\ 29 & 5 & 3\end{array}\right|$
Column - $1=\left\{\begin{array}{l}41 \\ 79 \\ 29\end{array}\right\}$
Column $-2=\left\{\begin{array}{l}1 \\ 7 \\ 5\end{array}\right\}$

Column $-3=\left\{\begin{array}{l}5 \\ 9 \\ 3\end{array}\right\}$
$\left\{\begin{array}{l}41 \\ 79 \\ 29\end{array}\right\}=\left\{\begin{array}{l}1 \\ 7 \\ 5\end{array}\right\}+8\left\{\begin{array}{l}5 \\ 9 \\ 3\end{array}\right\}$

$$
\begin{aligned}
\left|\begin{array}{lll}
41 & 1 & 5 \\
79 & 7 & 9 \\
29 & 5 & 3
\end{array}\right|= & \left|\begin{array}{lll}
1+8 \times 5 & 1 & 5 \\
7+8 \times 9 & 7 & 9 \\
5 & +8 \times 3 & 5
\end{array}\right| \\
= & \left|\begin{array}{lll}
1 & 1 & 5 \\
7 & 7 & 9 \\
5 & 5 & 3
\end{array}\right|+8\left|\begin{array}{lll}
5 & 1 & 5 \\
9 & 7 & 9 \\
3 & 5 & 3
\end{array}\right| \\
& =0 \\
\left|\begin{array}{lll}
1 & a & b+c \\
1 & b & c+a \\
1 & c & a+b
\end{array}\right|= & \left|\begin{array}{lll}
1 & a & a+b+c \\
1 & b & a+b+c \\
1 & c & a+b+c
\end{array}\right| \\
& =(a+b+c)\left|\begin{array}{lll}
1 & a & 1 \\
1 & b & 1 \\
1 & c & 1
\end{array}\right| \\
& =0 \\
\left|\begin{array}{ccc}
0 & c & b \\
-c & 0 & a \\
-b & -a & 0
\end{array}\right|= & -c\left|\begin{array}{ll}
-c & a \\
-b & 0
\end{array}\right|+b\left|\begin{array}{ll}
-c & 0 \\
-b & -a
\end{array}\right| \\
& =-a b c+a b c=0
\end{aligned}
$$

35. Consider the following in respect of the matrix $A=\left(\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right)$:
36. $A^{2}=-A$
37. $A^{3}=4 A$

Which of the above is /are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2

Solution: $A=\left(\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right)$
$A^{2}=\left(\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right)\left(\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right)$
$=\left(\begin{array}{cc}(-1 \times-1)+(1 \times 1) & (-1 \times 1)+(1 \times-1) \\ (1 \times-1)+(-1 \times 1) & 1+1\end{array}\right)$
$=\left(\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right)=-2 A$
$A^{3}=A^{2} A=-2 A A=-2 A^{2}=-2(-2 A)$

$$
=4 A
$$

Answer: (b)
36. What is the area of the parallelogram having diagonals $3 \hat{\imath}+\hat{\jmath}-2 \hat{k}$ and $\hat{\imath}-3 \hat{\jmath}+4 \hat{k}$?
(a) $5 \sqrt{5}$ square units
(b) $4 \sqrt{5}$ square units
(c) $5 \sqrt{3}$ square units
(d) $15 \sqrt{2}$ square units

Solution: If \vec{a} and \vec{b} are two vector representing adjacent side of parallelogram.
$\vec{a}+\vec{b}=3 \hat{\imath}+\hat{\jmath}-2 \hat{k}$
$\vec{a}-\vec{b}=\hat{\imath}-3 \hat{\jmath}+4 \hat{k}$
$2 \vec{a}=4 \hat{\imath}-2 \hat{\jmath}-2 \hat{k}$
$2 \hat{b}=2 \hat{\imath}+4 \hat{\jmath}-6 \hat{k}$
Area of the parallelogram $=|\vec{a} \times \vec{b}|=$
$\left|\begin{array}{ccc}i & j & k \\ 2 & -1 & -1 \\ 1 & 2 & -3\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}-1 & -1 \\ 2 & -3\end{array}\right|-\hat{\jmath}\left|\begin{array}{ll}2 & -1 \\ 1 & -3\end{array}\right|+$
$k\left|\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right|$
$=|5 \hat{\imath}+5 \hat{\jmath}+5 \hat{k}|=5 \sqrt{3}$
37. What is a vector of unit length orthogonal to both the vectors $\hat{\imath}+\hat{\jmath}+\hat{k}$ and $2 \hat{\imath}+3 \hat{\jmath}-\hat{k}$?
(a) $\frac{-4 \hat{\imath}+3 \hat{\jmath}-\hat{k}}{\sqrt{26}}$
(b) $\frac{-4 \hat{\imath}+3 \hat{\jmath}+\hat{k}}{\sqrt{26}}$
(c) $\frac{-3 \hat{\imath}+2 \hat{\jmath}-\hat{k}}{\sqrt{14}}$
(d) $\frac{-3 \hat{\imath}+2 \hat{\jmath}+\hat{k}}{\sqrt{14}}$

Solution: $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$ and $\vec{b}=2 \hat{\imath}+3 \hat{\jmath}-\hat{k}$
Unit vector perpendicular to both vector \vec{a} and \vec{b}
$\hat{n}=\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 3 & -1\end{array}\right|$
$=\left|\begin{array}{cc}1 & 1 \\ 3 & -1\end{array}\right| \hat{\imath}-\left|\begin{array}{cc}1 & 1 \\ 2 & -1\end{array}\right| \hat{\jmath}+\left|\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right| \hat{k}$
$=-4 \hat{\imath}+3 \hat{\jmath}+\hat{k}$
$|\vec{a} \times \vec{b}|=\sqrt{4^{2}+3^{2}+1^{2}}$
$=\sqrt{16+9+1}=\sqrt{26}$
$\hat{n}=\frac{-4 \hat{\imath}+3 \hat{\jmath}+\hat{k}}{\sqrt{26}}$
38. What is the number of four-digit decimal number (<1) in which no digit is repeated?
(a) 3024
(b) 4536
(c) 5040
(d) None of the above

Solution: Number of ways

$$
=8 \times 8 \times 7 \times 6=2688
$$

39. If $y=\log _{10} x+\log _{x} 10+\log _{x} x+\log _{10} 10$ then what is $\left(\frac{d y}{d x}\right)_{x=10}$ equal to?
(a) 10
(b) 2
(c) 1
(d) 0

Solution:
$y=\log _{10} x+\log _{x} 10+\log _{x} x+\log _{10} 10$
$\frac{d y}{d x}$
$=\frac{d\left(\log _{10} x+\log _{x} 10+\log _{x} x+\log _{10} 10\right)}{d x}$
$\frac{d y}{d x}=\frac{d \log _{10} x}{d x}+\frac{d \log _{x} 10}{d x}+0+0$
$\left(\log _{x} x=\log _{10} 10=1\right)$
$\frac{d y}{d x}=\frac{1}{x \ln 10}-\frac{\left(\log _{10} x\right)^{-2}}{x \ln 10}$
$\left(\frac{d y}{d x}\right)_{x=10}=\frac{1}{10 \ln 10}-\frac{1}{10 \ln 10}=0$
40. Suppose ω_{1} and ω_{2} are two distinct cube roots of unity different from 1 . Then what is $\left(\omega_{1}-\omega_{2}\right)^{2}$ equal to?
(a) 3
(b) 1
(c) -1
(d) -3

Solution: Cubic roots of equation $x^{3}=1$

$$
\begin{gathered}
(x-1)\left(x^{2}+x+1\right)=0 \\
\left(x^{2}+x+1\right)=0
\end{gathered}
$$

Let ω_{1} and ω_{2} are the roots of above quadratic equation

$$
\begin{gathered}
\omega_{1}+\omega_{2}=-1 \\
\omega_{1} \omega_{2}=1 \\
\left(\omega_{1}-\omega_{2}\right)^{2}=\left(\omega_{1}+\omega_{2}\right)^{2}-4 \omega_{1} \omega_{2} \\
=(-1)^{2}-4 \times 1=-3
\end{gathered}
$$

41. Three disc are thrown simultaneously. What is the probability that the sum on the three faces is at least 5 ?
(a) $\frac{17}{18}$
(b) $\frac{53}{54}$
(c) $\frac{103}{108}$
(d) $\frac{215}{215}$

Solution: Number of sample space $=$ $6 \times 6 \times 6$

Let E is event of occurance of sum of three faces is atleast 5 .

Let E is event of occurance of sum of three faces is equal to 3 and 4.

$$
\begin{aligned}
& x+y+z=3 \\
& x+y+z=4 \\
& E^{\prime}=\{(1,1,1),(2,1,1),(1,2,1),(1,1,2)\} \\
& \quad P\left(E^{\prime}\right)=\frac{4}{6 \times 6 \times 6}=\frac{1}{3 \times 3 \times 6}=\frac{1}{54} \\
& P(E)+P\left(E^{\prime}\right)=1 \\
& \\
& P(E)=\frac{53}{54}
\end{aligned}
$$

42. Two independent events A and B have $P(A)=\frac{1}{3}$ and $P(B)=\frac{3}{4}$ What is the probability that exactly one of the two events A or B occurs?
(a) $\frac{1}{4}$
(b) $\frac{5}{6}$
(c) $\frac{5}{12}$
(d) $\frac{7}{12}$

Solution:

If A and B are independent events then
$P(A \cap B)=P(A) P(B)=\frac{1}{3} \times \frac{3}{4}=\frac{1}{4}$
The probability that exactly one of the two events A or B occurs is equal to
$P(A \cup B)-P(A \cap B)=P(A)+P(B)-$ $2 P(A \cap B)=\frac{1}{3}+\frac{3}{4}-\frac{2}{4}=\frac{7}{12}$
43. A coin is tossed three times. What is the probability of getting head and tail alternately?
(a) $\frac{1}{8}$
(b) $\frac{1}{4}$
(c) $\frac{1}{2}$
(d) $\frac{3}{4}$

Solution:
Number of sample space $n(s)=2 \times 2 \times$ $2=8$

Set A is occurance of geeting head and tail alternately $=\{H T H, T H T\}$
$P(A)=\frac{2}{8}=\frac{1}{4}$
44. What is the sum of the squares of the intercepts cut off by the circle on the axes?
(a) $\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right)^{2}$
(b) $2\left(\frac{a^{2}+b^{2}}{a-b}\right)^{2}$
(c) $4\left(\frac{a^{2}+b^{2}}{a-b}\right)^{2}$
(d) None of the above

Solution: Equation of circle is

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

Circle passes through origin, (a, b) and (-b, -a).

$$
\begin{gathered}
0^{2}+0^{2}+2 g \times 0+2 f \times 0+c=0 \\
c=0 \\
a^{2}+b^{2}+2 g a+2 f b=0--(1) \\
(-b)^{2}+(-a)^{2}-2 g b-2 f a=0 \\
a^{2}+b^{2}-2 g b-2 f a=0--(2)
\end{gathered}
$$

Solving equation (1) and (2) we get,

$$
\begin{gathered}
g=-\frac{a^{2}+b^{2}}{2(a-b)} \\
f=\frac{a^{2}+b^{2}}{2(a-b)}
\end{gathered}
$$

For x -intercept, substitute $\mathrm{y}=0$ we get,

$$
\begin{gathered}
x^{2}+2 g x=0 \\
x=0,-2 g
\end{gathered}
$$

For y-intercept, substitute $x=0$ we get,

$$
\begin{gathered}
y^{2}+2 f y=0 \\
y=0,-2 f
\end{gathered}
$$

The sum of the squares of the intercepts cut off by the circle on the axes

$$
=4 g^{2}+4 f^{2}=\left(\frac{a^{2}+b^{2}}{a-b}\right)^{2}
$$

For the next two (2) items that follow:

Let $f(x)$ be the greatest integer function and $g(x)$ be the modulus function.
45. What is $g^{\circ} f\left(-\frac{5}{3}\right)-\left(f^{\circ} g\right)\left(-\frac{5}{3}\right)$ equal to?
(a) -1
(b) 0
(b) 1
(d) 2

Solution: $\mathrm{f}(\mathrm{x})=[\mathrm{x}]$ and $g(x)=|x|$

$$
f\left(-\frac{5}{3}\right)=\left[-\frac{5}{3}\right]=-2
$$

$$
\begin{gathered}
g(-2)=|-2|=2 \\
g\left(-\frac{5}{3}\right)=\left|-\frac{5}{3}\right|=\frac{5}{3} \\
f\left(\frac{5}{3}\right)=\left[\frac{5}{3}\right]=1 \\
g^{\circ} f\left(-\frac{5}{3}\right)-\left(f^{\circ} g\right)\left(-\frac{5}{3}\right)=2-1=1
\end{gathered}
$$

46. What is $\left(f^{\circ} f\right)\left(-\frac{9}{5}\right)+\left(g^{\circ} g\right)(-2)$ equal to?
(a) -1
(b) 0
(c) 1
(d) 2

Solution: $f\left(-\frac{9}{5}\right)=\left[-\frac{9}{5}\right]=-1$

$$
\begin{gathered}
f(-1)=[-1]=-1 \\
g(-2)=|-2|=2 \\
g(2)=|2|=2 \\
\left(f^{\circ} f\right)\left(-\frac{9}{5}\right)+\left(g^{\circ} g\right)(-2)=-1+2=1
\end{gathered}
$$

47. What is the binary equivalent of the decimal number 0.3125 ?
(a) 0.0111
(b) 0.1010
(c) 0.0101
(d) 0.1101

Solution:

0.0111

$$
\begin{gathered}
=0 \times 2^{-1}+1 \times 2^{-2}+1 \times 2^{-3}+1 \times 2^{-4} \\
=0+0.25+0.125+0.0625=0.4375
\end{gathered}
$$

0.1010
$=1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}+0 \times 2^{-4}$
$=0.5+0.125=0.625$
0.0101
$=0 \times 2^{-1}+1 \times 2^{-2}+0 \times 2^{-3}+1 \times 2^{-4}$
$=0.25+0.0625=0.3125$
48. If $A=\left(\cos 12^{\circ}-\cos 36^{\circ}\right)\left(\sin 96^{\circ}+\sin 24^{\circ}\right)$
$B=\left(\sin 60^{\circ}-\sin 12^{\circ}\right)\left(\cos 48^{\circ}-\cos 72^{\circ}\right)$
then what is $\frac{A}{B}$ equal to ?
(a) -1
(b) 0
(c) 1
(d) 2

Solution:

$\cos A-\cos B=2 \sin \frac{A+B}{2} \sin \frac{B-A}{2}$
$\sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$

$$
\begin{aligned}
& \quad \sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2} \\
& \cos 12^{0}-\cos 36^{0} \\
& =2 \sin \frac{12^{0}+36^{0}}{2} \sin \frac{36^{0}-12^{0}}{2} \\
& =2 \sin 24^{0} \sin 12^{0} \\
& \sin 96^{0}+\sin 24^{0} \\
& =2 \sin \frac{96^{0}+24^{0}}{2} \cos \frac{96^{0}-24^{0}}{2} \\
& =2 \sin 60^{\circ} \cos 36^{0} \\
& \sin 60^{0}-\sin 12^{0} \\
& =2 \cos \frac{60^{0}+12^{0}}{2} \sin \frac{60^{0}-12^{0}}{2} \\
& =2 \cos 36^{0} \sin 24^{0} \\
& \cos 48^{0}-\cos 72^{0} \\
& =2 \sin \frac{48^{0}+72^{0}}{2} \sin \frac{72^{0}-48^{0}}{2} \\
& =2 \sin 60^{\circ} \sin 12^{0} \\
& \frac{A}{B}=\frac{\left(2 \sin 24^{0} \sin 12^{0}\right) \times\left(2 \sin 60^{\circ} \cos 36^{0}\right)}{\left(2 \cos 36^{0} \sin 24^{0}\right) \times\left(2 \sin 60^{0} \sin 12^{0}\right)}=1
\end{aligned}
$$

49. Consider the following statements
50. If $A B C$ is an equilateral triangle, then $3 \tan (A+B) \tan C=1$
51. If $A B C$ is a triangle in which $=78^{\circ}$, $B=66^{\circ}$, then

$$
\tan \left(\frac{A}{2}+C\right)<\tan A
$$

3. If $A B C$ is any triangle, then

$$
\tan \left(\frac{A+B}{2}\right) \sin \left(\frac{C}{2}\right)<\cos \left(\frac{C}{2}\right)
$$

Which of the above statements is/are correct?
(a) 1 only
(b) 2 only
(c) 1 and 2
(d) 2 and 3

Solution: If $A B C$ is an equilateral triangle then $\angle A=\angle B=\angle C=60^{\circ}$

$$
\begin{aligned}
3 \tan (A+B) \tan C & =3 \tan \left(120^{\circ}\right) \tan 60^{\circ} \\
= & -3 \tan 60^{\circ} \tan 60^{\circ}=-9
\end{aligned}
$$

$\tan 120^{\circ}=\tan \left(180^{\circ}-60^{\circ}\right)=-\tan 60^{\circ}$

$$
\begin{aligned}
& \text { If } A=78^{0}, \quad B=66^{0} \quad \text { then } C=180^{\circ}- \\
& \left(78^{0}+66^{\circ}\right)=36^{0} \\
& \tan \left(\frac{A}{2}+C\right)=\tan \left(\frac{78^{0}}{2}+36^{0}\right)=\tan 72^{0} \\
& \tan A=\tan 78^{0}
\end{aligned}
$$

Since $72^{\circ}<78^{\circ}$
$\tan 72^{\circ}<\tan 78^{\circ}$
$\tan \left(\frac{A+B}{2}\right) \sin \left(\frac{C}{2}\right)$
$=\tan \left(\frac{78^{0}+66^{\circ}}{2}\right) \sin \frac{36^{0}}{2}$
$=\tan \frac{144^{0}}{2} \sin 18^{0}$
$=\tan 72^{\circ} \sin 18^{\circ}$
$\sin 18^{\circ}=\sin 90^{\circ}-72^{\circ}=\cos 72^{\circ}$
$\tan 72^{\circ} \sin 18^{\circ}=\sin 72^{\circ}$

$$
\begin{gathered}
\cos \left(\frac{C}{2}\right)=\cos 18^{\circ}=\sin 72^{\circ} \\
\tan \left(\frac{A+B}{2}\right) \sin \left(\frac{C}{2}\right)=\cos \left(\frac{C}{2}\right)
\end{gathered}
$$

For the next three (3) items that follow:

Consider a parallelogram whose vertices are $A(1,2), B(4, y), C(x, 6)$ and $D(3,5)$ taken in order.
50. What is the value of $A C^{2}-B D^{2}$?
(a) 25
(b) 30
(c) 36
(d) 40

Solution: Diagonal of parallelogram bisect each other.

Midpoint of $A C$ is point P.
X-coordinate of point P
$x_{p}=\frac{1+x}{2}$
Midpoint of $B D$ is point P.
$x_{p}=\frac{4+3}{2}$
Midpoint of BD $=$ Midpoint of $A C$
$7=1+x$
$x=6$
Y-coordinate of point P
$y_{p}=\frac{y+5}{2}$
$y_{p}=\frac{2+6}{2}$
Y - Coordinate of midpoint of $\mathrm{AC}=\mathrm{Y}$ coordinate of midpoint of BD.
$y+5=8$
$y=3$
$A(1,2), B(4,3), C(6,6)$ and $D(3,5)$
$\mathrm{AC}=\sqrt{(1-6)^{2}+(2-6)^{2}}=\sqrt{25+16}$
$=\sqrt{41}$
$B D=\sqrt{(4-3)^{2}+(3-5)^{2}}=\sqrt{1+4}=\sqrt{5}$
$\mathrm{AC}^{2}-\mathrm{BD}^{2}=41-5=36$
51. What is the point of intersection of the diagonals?
(a) $\left(\frac{7}{2}, 4\right)$
(b) $(3,4)$
(c) $\left(\frac{7}{2}, 5\right)$
(d) $(3,5)$

Solution: The point of intersection of the diagonal.

X -coordinate of point $\mathrm{P}=\frac{7}{2}$
Y - Coordinate of point $\mathrm{P}=4$
52. What is the area of the parallelogram?
(a) $\frac{7}{2}$ square units
(b) 4 square units
(c) $\frac{11}{2}$ square units
(d) 7 square units

Solution:

Area of the parallelogram
$=\left|\vec{r}_{A B} \times \vec{r}_{A D}\right|$
$\vec{r}_{A B}=\left(x_{B}-x_{A}\right) \hat{\imath}+\left(y_{B}-y_{A}\right) \hat{\jmath}$
$=(4-1) \hat{\imath}+(y-2) \hat{\jmath}=3 \hat{\imath}+\hat{\jmath}$
$\vec{r}_{A D}=\left(x_{D}-x_{A}\right) \hat{\imath}+\left(y_{D}-y_{A}\right) \hat{\jmath}$
$=(3-1) \hat{i}+(5-2) \hat{j}$
$=2 \hat{\imath}+3 \hat{\jmath}$
$\left|\vec{r}_{A B} \times \vec{r}_{A D}\right|=|9 \hat{\imath} \times \hat{\jmath}+2 \hat{\jmath} \times \hat{\imath}|=|7 \hat{\imath} \times \hat{\jmath}|=7$

For the next three (2) items that follow:

A plane P passes through the line of intersection of the planes $2 x-y+3 z=2$, $x+y-z=1$ and the point $(1,0,1)$.
53. What are the direction ratios of the line of intersection of the given planes?
(a) $(2,-5,-3)$
(b) $(1,-5,-3)$
(c) $(2,5,3)$
(d) $(1,3,5)$

Solution: Direction ratios of the line of intersection of the planes $2 x-y+3 z=2$, $x+y-z=1$.

Substitute $\mathrm{z}=0$

$$
\begin{gathered}
2 x-y=2 \\
x+y=1 \\
\mathrm{x}=1 \text { and } \mathrm{y}=0
\end{gathered}
$$

Point P(1, 0, 0)
Substitute $y=0$

$$
\begin{gathered}
2 x+3 z=2 \\
x-z=1 \\
\mathrm{x}=1 \text { and } \mathrm{z}=0
\end{gathered}
$$

Point Q $(1,0,0)$
Direction ratio of line $P Q$
54. What is the equation of the plane P ?
(a) $2 x+5 y-2=0$
(b) $5 x+2 y-5=0$
(c) $x+z-2=0$
(d) $2 x-y-2 z=0$

Solution: Equation of plane passing through Planes P_{1} and P_{2}

$$
\begin{gathered}
\mathrm{P}=P_{1}+\lambda P_{2} \\
2 x-y+3 z-2+\lambda(x+y-z-1)=0 \\
(2+\lambda) x+(\lambda-1) y+(3-\lambda) z-2-\lambda=0
\end{gathered}
$$

Plane P passes through $(1,0,1)$

$$
\begin{gathered}
(2+\lambda)+(3-\lambda)-2-\lambda=0 \\
5-2-\lambda=0 \\
\lambda=3
\end{gathered}
$$

$$
5 x+2 y=5
$$

55. If the plane P touches the sphere $x^{2}+$ $y^{2}+z^{2}=r^{2}$, then what is r equal to?
(a) $\frac{2}{\sqrt{29}}$
(b) $\frac{4}{\sqrt{29}}$
(c) $\frac{5}{\sqrt{29}}$
(d) 1

Solution: Centre of sphere $x^{2}+y^{2}+z^{2}=r^{2}$
C($0,0,0$)
Perpendicular from C on the plane P.
$d=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}$
$d=\frac{\left|5 x_{1}+2 y_{1}-5\right|}{\sqrt{5^{2}+2^{2}}}$
$d=\frac{5}{\sqrt{29}}$

For the next two (2) items that follow:

Consider the function $f(x)=\left|x^{2}-5 x+6\right|$
56. What is $f^{\prime}(4)$ equal to ?
(a) -4
(b) -3
(c) 3
(d) 2

Solution: $f(x)=\left|x^{2}-5 x+6\right|$

$$
\begin{aligned}
& x^{2}-5 x+6=(x-3)(x-2) \\
& f(x)>0 \text { if } x>3 \text { and } x<2 \\
& f(x)<0 \text { if } 2<x<3 \\
& f(x)=x^{2}-5 x+6 x<2 \\
& =-\left(x^{2}-5 x+6\right) 2<x<3 \\
& =x^{2}-5 x+6 x>3 \\
& f^{\prime}(x)=2 x-5, x>3 \\
& f^{\prime}(4)=3
\end{aligned}
$$

57. What is $f^{\prime}(2.5)$ equal to ?
(a) -3
(b) -2
(c) 0
(d) 2

Solution

$$
\begin{gathered}
f(x)=-\left(x^{2}-5 x+6\right) 2<x<3 \\
f^{\prime}(x)=-2 x+5 \\
f^{\prime}(2.5)=0
\end{gathered}
$$

58. If

$$
\int_{-2}^{5} f(x) d x=4 \text { and }
$$

$\int_{0}^{5}\{1+f(x)\} d x=$
7 then what is $\int_{-2}^{0} f(x) d x$ equal to?
(a) -3
(b) 2
(c) 3
(d) 5

Solution:
$\int_{-2}^{5} f(x) d x=4$
$\int_{-2}^{0} f(x) d x+\int_{0}^{5} f(x)=4$
$\int_{0}^{5}\{1+f(x)\} d x=7$
$\int_{0}^{5} d x+\int_{0}^{5} f(x) d x=7$
$\int_{0}^{5} f(x) d x=7-5=2$
$\int_{-2}^{0} f(x) d x+2=4$
$\int_{-2}^{0} f(x) d x=2$

For the next two (2) items that follow:

Let z be a complex number satisfying

$$
\left|\frac{z-4}{z-8}\right|=1
$$

and

$$
\left|\frac{z}{z-2}\right|=\frac{3}{2}
$$

59. What is $|z|$ equal to?
(a) 6
(b) 12
(c) 18
(d) 36

Solution:

$$
\begin{gathered}
\left|\frac{z-4}{z-8}\right|=1 \\
(x-4)^{2}+y^{2}=(x-8)^{2}+y^{2} \\
(x-4+x-8)(x-4-x+8)=0 \\
(2 x-12) 4=0 \\
x=6 \\
\left|\frac{z}{z-2}\right|=\frac{3}{2}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{(x-2)^{2}+y^{2}}}=\frac{3}{2} \\
\frac{x^{2}+y^{2}}{(x-2)^{2}+y^{2}}=\frac{9}{4} \\
\frac{6^{2}+y^{2}}{(6-2)^{2}+y^{2}}=\frac{9}{4} \\
y=0 \\
z=x+i y=6 \\
|z|=6
\end{gathered}
$$

60. What is $\left|\frac{z-6}{z+6}\right|$ equal to?
(a) 3
(b) 2
(c) 1
(d) 0

Solution:

$$
\left|\frac{z-6}{z+6}\right|=\left|\frac{6-6}{6+6}\right|=0
$$

For the next two (2) items that follow:

Given that $\log _{x} y, \log _{z} x, \log _{y} z$ are in GP, $\mathrm{xyz}=64$ and $\mathrm{x}^{3}, \mathrm{y}^{3}, \mathrm{z}^{3}$ are in AP.
61. Which one of the following is correct?
x, y and z are
(a) in AP only
(b) in GP only
(c) in both AP and GP
(d) neither in AP nor in GP

Solution: $\log _{x} y, \log _{z} x, \log _{y} z$ are in GP
$\frac{\log _{z} x}{\log _{x} y}=\frac{\log _{y} z}{\log _{z} x}$
$\left(\log _{z} x\right)^{2}=\log _{x} y \log _{y} z=\log _{x} z$
$\log _{z} x=\frac{1}{\log _{x} z}$
$\left(\log _{z} x\right)^{2}=\frac{1}{\log _{z} x}$
$\left(\log _{z} x\right)^{3}=1$
$\log _{z} x=1=\log _{z} z$
$z=x$
62. Which one of the following is correct?
$x y, y z$ and $z x$ are
(a) in AP only
(b) in GP only
(c) in both AP and GP
(d) neither in AP nor in GP

For the next two (2) items that follow:

Given that $\tan \alpha$ and $\tan \beta$ are the roots of the equation $x^{2}+b x+c=0$ with $b \neq 0$.
63. What is $\tan (\alpha+\beta)$ equal to?
(a) $b(c-1)$
(b) $c(b-1)$
(c) $c(b-1)^{-1}$
(d) $b(c-1)^{-1}$

Solution: If $\tan \alpha$ and $\tan \beta$ are the roots of the equation $x^{2}+b x+c=0$ then

$$
\begin{gathered}
\tan \alpha+\tan \beta=-b \\
\tan \alpha \tan \beta=c \\
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=-b(1-c)^{-1} \\
=b(c-1)^{-1}
\end{gathered}
$$

64. What is $\sin (\alpha+\beta) \sec \alpha \sec \beta$ equal to?
(a) b
(b) -b
(c) c
(d) -c

Solution:
$\sin (\alpha+\beta) \sec \alpha \sec \beta$
$=\frac{\sin \alpha \cos \beta+\cos \alpha \sin \beta}{\cos \alpha \cos \beta}$
$=\tan \alpha+\tan \beta$
$=-b$

For the next two (2) items that follow:

Consider the curves

$$
y=|x-1| \text { and }|x|=2
$$

65. What is/are the point(s) of intersection of the curves?
(a) $(-2,3)$ only
(b) $(2,1)$ only
(c) $(-2,3)$ and $(2,1)$
(d) Neither $(-2,3)$ nor $(2,1)$

Solution: $y=|x-1|$ and

$$
\begin{gathered}
|x|=2 \\
x= \pm 2 \\
y=|2-1|=1 \\
y=|-2-1|=3
\end{gathered}
$$

Point of intersection are $(2,1)$ and $(-2,3)$
66. What is the area of the region bounded by the curves and x-axis?
(a) 3 square units
(b) 3 square units
(c) 5 square units
(d) 6 square units

Solution:

Area of the region bounded by the curves and x -axis

Area $=\left|\frac{1}{2} \times(-2-1) \times 3\right|+\left|\frac{1}{2} \times(2-1) \times 1\right|$ $=\frac{9+1}{2}=5$

For the next two (2) items that follow:

Consider the function

$$
\mathrm{f}(\mathrm{x})=\left|\begin{array}{ccc}
\mathrm{x}^{3} & \sin \mathrm{x} & \cos \mathrm{x} \\
6 & -1 & 0 \\
\mathrm{p} & \mathrm{p}^{2} & \mathrm{p}^{3}
\end{array}\right|
$$

where p is a constant.
67. What is the value of $f^{\prime}(0)$?
(a) p^{3}
(b) $3 p^{3}$
(c) $6 p^{3}$
(d) $-6 p^{3}$

Solution:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\left|\begin{array}{ccc}
\mathrm{x}^{3} & \sin \mathrm{x} & \cos \mathrm{x} \\
6 & -1 & 0 \\
\mathrm{p} & \mathrm{p}^{2} & \mathrm{p}^{3}
\end{array}\right| \\
& f(x)=x^{3}\left|\begin{array}{cc}
-1 & 0 \\
p^{2} & p^{3}
\end{array}\right|-\sin x\left|\begin{array}{cc}
6 & 0 \\
p & p^{3}
\end{array}\right| \\
&+\cos x\left|\begin{array}{cc}
6 & -1 \\
p & p^{2}
\end{array}\right| \\
& f^{\prime}(x)=3 x^{2}\left|\begin{array}{cc}
-1 & 0 \\
p^{2} & p^{3}
\end{array}\right|-\cos x\left|\begin{array}{cc}
6 & 0 \\
p & p^{3}
\end{array}\right| \\
&-\sin x\left|\begin{array}{cc}
6 & -1 \\
p & p^{2}
\end{array}\right|
\end{aligned}
$$

$f^{\prime}(0)=-6 p^{3}$
68. What is the value of p for which $f^{\prime \prime}(0)=0$?
(a) $-\frac{1}{6}$ or 0
(b) -1 or 0
(c) $-\frac{1}{6}$ or 1
(d) -1 or 1

Solution:

$f^{\prime \prime}(x)=6 x\left|\begin{array}{cc}-1 & 0 \\ p^{2} & p^{3}\end{array}\right|+\sin x\left|\begin{array}{cc}6 & 0 \\ p & p^{3}\end{array}\right|$

$$
-\cos x\left|\begin{array}{ll}
6 & -1 \\
p & p^{2}
\end{array}\right|
$$

$$
\begin{aligned}
& f^{\prime \prime}(0)=-\left(6 p^{2}+p\right)=-p(1+6 p)=0 \\
& p=0,-\frac{1}{6}
\end{aligned}
$$

For the next two (2) items that follow:
Consider the function

$$
f(x)=\frac{a^{[x]+x}-1}{[x]+x}
$$

Where [.] denotes the greatest integer function.
69. What is $\lim _{x \rightarrow 0^{+}} f(x)$ equal to ?
(a) 1
(b) $\ln a$
(c) $1-a^{-1}$
(d) Limit does not exist

Solution: $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{a^{x}-1}{x}=\ln a$
70. What is $\lim _{x \rightarrow 0^{-}} f(x)$ equal to?
(a) 1
(b) $\ln a$
(c) $1-a^{-1}$
(d) Limit does not exist

Solution: $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{a^{[x]+x}-1}{[x]+x}=$
$\lim _{x \rightarrow 0^{-}} \frac{a^{x-1}-1}{x-1}=\frac{a^{-1}-1}{0-1}=1-a^{-1}$

