NDA-1 2023 Math Solution

Prepared by

Er. Ranbir Mukhya
IIT Kharagpur (M.Tech)

1. If ω is a non-real cube root of 1 , then what is the value of $\left|\frac{1-\omega}{\omega+\omega^{2}}\right|$?
(a) $\sqrt{3}$
(b) $\sqrt{2}$
(c) 1
(d) $\frac{4}{\sqrt{3}}$

Solution: $\mathrm{x}^{3}=1$
Cubic roots of the unity are $1, \omega$ and ω^{2}
Sum of roots: $1+\omega+\omega^{2}=0$

$$
\omega+\omega^{2}=-1
$$

Let $\mathrm{z}=\left|\frac{1-\omega}{\omega+\omega^{2}}\right|=\left|\frac{1-\omega}{-1}\right|=|1-\omega|$
$\omega=-\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}$
$1-\omega=\frac{3}{2}-\mathrm{i} \frac{\sqrt{3}}{2}$
$|1-\omega|=\sqrt{\left(\frac{3}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=\sqrt{3}$
Answer: (a)
2. What is the number of 6 -digit numbers that can be formed only by using $0,1,2,3,4$ and 5 (each once); and divisible by 6 ?
(a) 96
(b) 120
(c) 192
(d) 312

Solution:

A number is divisible by 6 if it is divisible by 2 and 3 both.
A number divisible by 2 then at unit digit, we have to choose $0,2,4$.
A number divisible by 3 then sum of digit should be divisible by 3 .
Sum of number $=0+1+2+3+4+5=$ 15.

15 is divisible by 3.
Total number of number in which unit place is $0=5$!
Total number of numbers in which unit place is $2=4 \times 4$!
Total number of numbers in which unit place is $4=4 \times 4$!

Total number $=5!+4 \times 4!+4 \times 4!$

$$
=312
$$

Answer: (d)
3. What is the binary number equivalent to decimal number 1011 ?
(a) 1011
(b) 111011
(c) 11111001
(d) 111110011

Solution:

2	1011	Remainder
2	505	1
2	252	1
2	126	0
2	63	0
2	31	1
2	15	1
2	7	1
2	3	1
	1	1

$$
(1011)_{10}=(111110011)_{2}
$$

4. The system of linear equations
$x+2 y+z=4$
$2 x+4 y+2 z=8$
$3 x+6 y+3 z=10$ has
(a) A unique solution
(b) Infinite many solutions
(c) No solution
(d) Exactly three solutions

Solution:

Plane-1: $x+2 y+z=4$
Plane-2: $2 x+4 y+2 z=8$
Plane-1 and Plane-2 is coincident plane.
Plane-3, Plane-1(2) are parallel plane.
So there is no solution.
Answer: (c)
5. What is the sum of the roots of the equation
$\left|\begin{array}{ccc}0 & x-a & x-b \\ 0 & 0 & x-c \\ x+b & x+c & 1\end{array}\right|=0 ?$
(a) $a+b+c(b) a-b+c$
(c) $a+b-c(d) a-b-c$

Solution:

$$
\begin{aligned}
& \left|\begin{array}{ccc}
0 & x-a & x-b \\
0 & 0 & x-c \\
x+b & x+c & 1
\end{array}\right|=0 \\
& (x+b)(x-a)(x-c)=0 \\
& x_{1}=a, x_{2}=-b, x_{3}=c \\
& x_{1}+x_{2}+x_{3}=a-b+c
\end{aligned}
$$

Answer: (b)
6. If $2-\mathrm{i} \sqrt{3}$ where $\mathrm{i}=\sqrt{-1}$ is a root of the equation $x^{2}+a x+b=0$, then what is the value of $(a+b)$?
(a) -11
(b) -3
(c) 0
(d) 3

Solution:
complex roots are in conjugate pair.So if $2-\mathrm{i} \sqrt{3}$ is roots of quadratic equation then other roots is $2+\mathrm{i} \sqrt{3}$

Sum of roots $=4$
Product of roots $=7$
Sum of roots $=-\mathrm{a}=4$
$\mathrm{a}=-4$
Product of roots $=b=7$
$a+b=-4+7=3$

Answer: (c)
7. If $\mathrm{z}=\frac{1+\mathrm{i} \sqrt{3}}{1-\mathrm{i} \sqrt{3}}$ where $\mathrm{i}=\sqrt{-1}$, then what is the argument of z ?
(a) $\frac{\pi}{3}$
(b) $\frac{2 \pi}{3}$
(c) $\frac{4 \pi}{3}$
(d) $\frac{5 \pi}{6}$

Solution:

$1+i \sqrt{3}=2 e^{i \frac{\pi}{3}}$
$1-\mathrm{i} \sqrt{3}=2 \mathrm{e}^{-\mathrm{i} \frac{\pi}{3}}$
$z=\frac{1+\mathrm{i} \sqrt{3}}{1-\mathrm{i} \sqrt{3}}=\frac{2 \mathrm{e}^{\mathrm{i} \frac{\pi}{3}}}{2 \mathrm{e}^{-\mathrm{i} \frac{\pi}{3}}}=\mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}}$
Answer: (b)

8 If $\log _{x} a, a^{x}$ and $\log _{b} x$ are in GP, then what is x equal to?
(a) $\log _{a}\left(\log _{b} a\right)$
(b) $\log _{b}\left(\log _{a} b\right)$
(c) $\frac{\log _{a}\left(\log _{b} a\right)}{2}$
(d) $\frac{\log _{b}\left(\log _{a} b\right)}{2}$

Solution:

In G.P $\frac{\text { second term }}{\text { first term }}=\frac{\text { third term }}{\text { second term }}=r$

$$
\begin{gathered}
\frac{a^{x}}{\log _{x} a}=\frac{\log _{b} x}{a^{x}} \\
a^{2 x}=\log _{x} a \log _{b} x \\
\log _{x} a \log _{b} x=\log _{b} a \\
x=\frac{\log _{a} \log _{b} a}{2}
\end{gathered}
$$

Answer: (c)

9. If $2^{\frac{1}{c}}, 2^{\frac{b}{a c}}, 2^{\frac{1}{a}}$ are in GP, then which one of the following is correct?
(a) a, b, c are in AP
(b) a, b, c are in GP
(c) a, b, c are in HP
(d) ab, bc, ca are in AP

Solution: $2^{\frac{1}{c}}, 2^{\frac{b}{a c}}, 2^{\frac{1}{a}}$ are in GP

$$
\begin{aligned}
& \frac{2^{\frac{b}{a c}}}{2^{\frac{1}{c}}}=\frac{2^{\frac{1}{a}}}{2^{\frac{b}{a c}}} \\
& 2^{\frac{2 b}{a c}}=2^{\left(\frac{1}{a}+\frac{1}{c}\right)} \\
& \frac{2 b}{a c}=\frac{a+c}{a c} \\
& 2 b=a+c
\end{aligned}
$$

a, b, c are in A.P.
Answer: (a)
10 The first and the second terms of AP are $\frac{5}{2}$ and $\frac{23}{12}$ respectively. If $n^{\text {th }}$ term is the largest negative term, what is the value of n ?
(a) 5
(b) 5
(c) 7
(d) n cannot be determined

Solution:

First term of an A.P. $=\frac{5}{2}$
Second term of an A.P. $=\frac{23}{12}$
Common difference d

$$
\begin{aligned}
& =\frac{23}{12}-\frac{5}{2}=\frac{23-3}{12}=-\frac{7}{12} \\
& t_{n}=a+(n-1) d
\end{aligned}
$$

$\mathrm{t}_{\mathrm{n}}=\frac{5}{2}-(\mathrm{n}-1) \times \frac{7}{12}$
$\mathrm{t}_{\mathrm{n}}<0$
$\frac{5}{2}-(n-1) \times \frac{7}{12}<0$
$\frac{5}{2}<(\mathrm{n}-1) \times \frac{7}{12}$
$30<7 \mathrm{n}-4$
$\frac{34}{7}<\mathrm{n}$
For greatest negative number $\mathrm{n}=5$
Answer: (b)
10. For how many integral values of k, the equation $x^{2}-4 x+k=0$, where k is an integer has real roots and both of them lie in the interval $(0,5)$?
(a) 3
(b) 4
(c) 5
(d) 6

Solution:

For $k=4,3,2,1,0$ both roots are real and lies between 0 and 5 .

Answer: (c)
11. In an AP, the first term is x and the sum of the first n terms is zero. What is the sum of next m terms?
(a) $\frac{m x(m+n)}{n-1}$
(b) $\frac{m x(m+n)}{1-n}$
(c) $\frac{n x(m+n)}{m-1}$
(d) $\frac{n x(m+n)}{1-m}$

Solution:

First term $=\mathrm{x}$
$S_{n}=\frac{n}{2}(2 x+(n-1) d)$
$S_{n}=0$
$\frac{n}{2}(2 x+(n-1) d)=0$
$2 x+(n-1) d=0$
$\mathrm{d}=-\frac{2 \mathrm{x}}{\mathrm{n}-1}$
$S_{n+m}=\frac{n+m}{2}(2 x+(m+n-1) d)$
$S_{n+m}=\frac{n+m}{2}\left(2 x+(m+n-1) \times \frac{-2 x}{n-1}\right)$
$S_{n+m}=\frac{n+m}{2} 2 \times\left(1-\frac{1}{n-1} \times(m+n-1)\right)$
$S_{n+m}=\frac{x m(n+m)}{1-n}$
Answer: (b)
12. If z is a complex number such that $\frac{z-1}{z+1}$ is purely imaginary, then what is $|\mathrm{z}|$ equal to?
(a) $\frac{1}{2}$
(b) $\frac{2}{3}$
(c) 1
(d) 2

Solution:

Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
$\frac{z-1}{z+1}=\frac{x+i y-1}{x+i y+1}=\frac{(x-1)+i y}{(x+1)+i y}$
$=\frac{(x-1)+i y}{(x+1)+i y} \times \frac{(x+1)-i y}{(x+1)-i y}$
$=\frac{x^{2}+y^{2}-1-i(-x y+y+x y+y}{(x+1)^{2}+y^{2}}$
If $\frac{z-1}{\mathrm{z}+1}$ is purely imaginary number then real part should equal to zero.
$\operatorname{Re}\left(\frac{z-1}{z+1}\right)=0$
$\frac{x^{2}+y^{2}-1}{(x+1)^{2}+y^{2}}=0$
$x^{2}+y^{2}-1=0$
$x^{2}+y^{2}=1$
$|z|=\sqrt{x^{2}+y^{2}}$
$|z|=\sqrt{1}=1$
Answer: (c)
13. How many real numbers satisfy the equation $|x-4|+|x-7|=15$?
(a) Only one
(b) Only two
(c) Only three
(d) Infinitely many

Solution:

Case 1: $x>7$

$$
\begin{aligned}
& x-4+x-7=15 \\
& 2 x-11=15 \\
& 2 x=26 \\
& x=13
\end{aligned}
$$

Case 2: $4<x<7$

$$
x-4+7-x=15
$$

$$
3=15
$$

No solution.
Case 3: $\mathrm{x}<4$
$4-x+7-x=15$
$11-2 x=15$
$\mathrm{x}=-2$
So roots of the equation $x=-2,13$
Answer: (b)
14. p, q, r and s are in AP such that $p+s=8$ and $q \mathrm{r}=15$. What is the difference between largest and smallest numbers?
(a) 6
(b) 5
(c) 4
(d) 3

Solution:

$p+s=8$
Let common difference of A.P. is d and first term is p .
$s=p+3 d$
$2 p+3 d=8$
$q r=15$
$q=p+d$ and $r=p+2 d$
$(p+d)(p+2 d)=15$
$2 p+3 d=8$
$p+2 d+p+d=8$
$p+2 d=8-(p+d)=8-q$
$(p+d)(p+2 d)=15$
$q(8-q)=15$
$q=5,3$
$r=3,5$
$p+d=5$
$p+2 d=3$
$d=-2$
$p=7$
$7,5,3,1$ are number.
Difference between largest and smallest is 6.

Consider the following for the next two (02) items that follow:

Let $\mathrm{X}=\frac{\sin ^{2} \mathrm{~A}+\sin \mathrm{A}+1}{\sin \mathrm{~A}}$ where $0<\mathrm{A} \leq \frac{\pi}{2}$
15. What is the minimum value of x ?
(a) 1
(b) 2
(c) 3
(d) 44

Solution:

$$
\begin{aligned}
& x=\frac{\sin ^{2} A+\sin A+1}{\sin A} \\
& x=\sin A+\frac{1}{\sin A}+1 \\
& \text { A. } M \geq \text { G. M. } \\
& \frac{\sin A+\frac{1}{\sin A}}{2} \geq \sqrt{\sin A \times \frac{1}{\sin A}} \\
& \sin A+\frac{1}{\sin A} \geq 2 \\
& x \geq 3
\end{aligned}
$$

Answer: (c)

16 At what value of A does x attain the minimum value?
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{2}$

Solution:

When numbers are equal then arithmetic mean is equal to Geometric mean

$$
\begin{aligned}
& \sin A=\frac{1}{\sin A} \\
& \sin ^{2} A=1 \\
& A=\frac{\pi}{2}
\end{aligned}
$$

Answer: (d)

Consider the following for the next two (02) items that follow:

Consider the function
$f(x)=|x-2|+|3-x|+|4-x|$, where $x \in$ R.
17. At what value of x does the function attain minimum value?
(a) 2
(b) 3
(c) 4
(d) 0

Solution:

$f(x)=|x-2|+|3-x|+|4-x|$
if $x<2|x-2|=2-x$
$|3-x|=3-x$
$|4-x|=4-x$
$f(x)=11-3 x$
if $2<x<3|x-2|=x-2$

$$
\begin{aligned}
& |3-x|=3-x \\
& |4-x|=4-x
\end{aligned}
$$

$$
f(x)=5-x
$$

if $3<x<4|x-2|=x-2$
$|3-x|=3-x$
$|4-x|=4-x$
$f(x)=x-1$
if $4<x|x-2|=x-2$
$|3-x|=x-3$
$|4-x|=x-4$
$f(x)=3 x-9$
$f(2)=5$
$f(3)=2$
$f(4)=3$
Function is minimum at $x=3$.
Answer: (b)
18. What is the minimum value of the function?
(a) 2
(b) 3
(c) 4
(d) 0

Answer: (a)
Consider the following for the next two (02) items that follow:

Given that $m(\theta)=\cot ^{2} \theta+n^{2} \tan ^{2} \theta+2 n$, where n is a fixed real number.
19. What is the least value of $m(\theta)$?
(a) n
(b) $2 n$
(c) $3 n$
(d) $4 n$
20. Under what condition does m attain the least value?
(a) $n=\tan ^{2} \theta$
(b) $n=\cot ^{2} \theta$
(c) $n=\sin ^{2} \theta$
(d) $n=\cos ^{2} \theta$

Solution: If a and b are two positive number then A. M. \geq G. M.
$\frac{a+b}{2} \geq \sqrt{a b}$
$m(\theta)=\cot ^{2} \theta+n^{2} \tan ^{2} \theta+2 n$
$y(\theta)=\frac{1}{\tan ^{2} \theta}+n^{2} \tan ^{2} \theta$
$\frac{\frac{1}{\tan ^{2} \theta}+\mathrm{n}^{2} \tan ^{2} \theta}{2} \geq \sqrt{\frac{1}{\tan ^{2} \theta} \times \mathrm{n}^{2} \tan ^{2} \theta}$
$\frac{1}{\tan ^{2} \theta}+n^{2} \tan ^{2} \theta \geq 2 n$
Minimum value of $m(\theta)$ is equal to $4 n$
Equality hold when both a and b are equal.
$\frac{1}{\tan ^{2} \theta}=\mathrm{n}^{2} \tan ^{2} \theta$
$\cot ^{4} \theta=\mathrm{n}^{2}$
$\cot ^{2} \theta=\mathrm{n}$
Consider the following for the next two (02) items that follows:

A quadrilateral is formed by the lines $x=$ $0, y=0, x+y=1$ and $6 x+y=3$.
21. What is the equation of diagonal through origin?
(a) $3 x+y=0$
(b) $2 x+3 y=0$
(c) $3 x-2 y=0$
(d) $3 x+2 y=0$
22. What is the equation of other diagonal?
(a) $x+2 y-1=0$
(b) $x-2 y-1=0$
(c) $2 x+y+1=0$
(d) $2 x+y-1=0$

Solution:

Co-ordinate of vertex of quadrilateral are
$A(0,0), B(1 / 2,0), C(x, y)$ and $D(0,1)$
Intersection of lines $x+y=1$ and $6 x+y=3$
is $C(x, y)$.
$x=2 / 5$ and $y=3 / 5$.
Equation of diagonal $A C$ is
Slope of Line AC $=\frac{y_{C}-y_{A}}{x_{C}-x_{A}}=\frac{\frac{3}{5}-0}{\frac{2}{5}-0}=\frac{3}{2}$

$$
y=\frac{3}{2} x
$$

Equation of diagonal BD is
Slope of line BD

$$
\begin{gathered}
\frac{y_{B}-y_{D}}{x_{B}-x_{D}}=\frac{0-1}{\frac{1}{2}-0}=-2 \\
y=-2 x+1
\end{gathered}
$$

Consider the following for the next two (02) items that follow:
$P(x, y)$ is any point on the ellipse $x^{2}+4 y^{2}=1$.
Let E, F be the foci of the ellipse.
23. What is $\mathrm{PE}+\mathrm{PF}$ equal to?
(a) 1
(b) 2
(c) 3
(d) 4

Solution:

$x^{2}+4 y^{2}=1$
$\frac{x^{2}}{1}+\frac{y^{2}}{\frac{1}{4}}=1$
$a^{2}=1$
$b^{2}=\frac{1}{4}$
$b^{2}=a^{2}\left(1-e^{2}\right)$
$\frac{1}{4}=1-\mathrm{e}^{2}$
$e=\frac{\sqrt{3}}{2}$
Focus $E \equiv(-a e, 0)$

$$
\begin{aligned}
E & \equiv\left(-\frac{\sqrt{3}}{2}, 0\right) \\
\text { Focus } F & \equiv(+\mathrm{ae}, 0)
\end{aligned}
$$

$$
F \equiv\left(+\frac{\sqrt{3}}{2}, 0\right)
$$

An ellipse is the locus of all those points in a plane such that the sum of their distances from two fixed points in the plane, is constant.

Choose point $P \equiv\left(0, \frac{1}{2}\right)$
$\mathrm{PE}+\mathrm{PF}=1+1=2$
Answer: (b)

Consider the following for the next two (02) items that follow:

The line $y=x$ partitions the circle $(x-a)^{2}+$ $y^{2}=a^{2}$ in two segments.
24. What is the area of minor segment?
(a) $\frac{(\pi-2) \mathrm{a}^{2}}{4}$
(b) $\frac{(\pi-1) \mathrm{a}^{2}}{4}$
(c) $\frac{(\pi-2) \mathrm{a}^{2}}{2}$
(d) $\frac{(\pi-1) a^{2}}{2}$

Solution:

The equation of circle: $(x-a)^{2}+y^{2}=a^{2}$
Equation of line : $\mathrm{y}=\mathrm{x}$
Point of intersection of line and circle
$(x-a)^{2}+x^{2}=a^{2}$
$2 \mathrm{x}^{2}-2 \mathrm{ax}=0$
$2 x(x-a)=0$
$\mathrm{x}=0$, a
Point of intersection are $A \equiv(0,0)$ and
$B \equiv(a, a)$.
$A B=\sqrt{2} a$
Centre $C \equiv(a, 0)$
Radius $\mathrm{R}=\mathrm{a}$
Angle made by $A B$ at the centre C
$\cos \theta=\frac{2 \mathrm{R}^{2}-\mathrm{AB}^{2}}{2 \mathrm{R}^{2}}=\frac{2 \mathrm{a}^{2}-2 \mathrm{a}^{2}}{2 \mathrm{a}^{2}}=0$
$\theta=\frac{\pi}{2}$
Area of minor arc $=\frac{\pi \mathrm{a}^{2}}{2 \pi} \times \frac{\pi}{2}=\frac{\pi \mathrm{a}^{2}}{4}$
Area of triangle $A B C=\frac{1}{2} \times R \times R=\frac{1}{2} a^{2}$
Area bounded by line and curve
$=\frac{\pi \mathrm{a}^{2}}{4}-\frac{1}{2} \mathrm{a}^{2}=\frac{(\pi-2) \mathrm{a}^{2}}{4}$
Answer: (a)
25. What is the area of major segment?
(a) $\frac{(3 \pi-2) a^{2}}{4}$
(b) $\frac{(3 \pi+2) a^{2}}{4}$
(c) $\frac{(3 \pi-2) a^{2}}{2}$
(d) $\frac{(3 \pi+2) \mathrm{a}^{2}}{2}$

Solution:
Area of major segment
$=\pi \mathrm{a}^{2}-\frac{(\pi-2) \mathrm{a}^{2}}{4}=\frac{(3 \pi+2) \mathrm{a}^{2}}{4}$
Answer: (b)
Consider the following for the next two (02) items that follow:

Let $A(1,-1,2)$ and $B(2,1,-1)$ be the end points of the diameter of the sphere $x^{2}+y^{2}+z^{2}+$ $2 u x+2 v y+2 w z-1=0$.
26. What is $u+v+w$ equal to?
(a) -2
(b) -1
(c) 1
(d) 2

Solution: If A and B are end points of diameter of sphere then mid point of $A B$ is centre of sphere.

Co-ordinate of mid point of $A B$.
$\mathrm{x}=\frac{\mathrm{x}_{\mathrm{A}}+\mathrm{x}_{\mathrm{B}}}{2}=\frac{1+2}{2}=\frac{3}{2}$
$\mathrm{y}=\frac{\mathrm{y}_{\mathrm{A}}+\mathrm{y}_{\mathrm{B}}}{2}=\frac{-1+1}{2}=0$
$\mathrm{z}=\frac{\mathrm{z}_{\mathrm{A}}+\mathrm{z}_{\mathrm{B}}}{2}=\frac{2-1}{2}=\frac{1}{2}$
Centre of sphere of $x^{2}+y^{2}+z^{2}+2 u x+2 v y+$ $2 w z-1=0$

$$
\begin{aligned}
& (x+u)^{2}+(y+v)^{2}+(z+w)^{2} \\
& =1+u^{2}+v^{2}+w^{2}
\end{aligned}
$$

Centre $C \equiv(-u,-v,-w)$
$-\mathrm{u}=\mathrm{x}=\frac{3}{2}$
$-\mathrm{v}=\mathrm{y}=0$
$-\mathrm{w}=\mathrm{z}=\frac{1}{2}$
$\mathrm{u}+\mathrm{v}+\mathrm{w}=-2$
Answer: (a)
27.If $P(x, y, z)$ is any point on the sphere, then what is $P A^{2}+P B^{2}$ equal to ?
(a) 15
(b) 14
(c) 13
(d) 6.5

Solution:

If we join $P A B$, it will form a right angle triangle at point P.
$\mathrm{PA}^{2}+\mathrm{PB}^{2}=\mathrm{AB}^{2}$
$A B^{2}=(1-2)^{2}+(-1-1)^{2}+(-1-2)^{2}$
$\mathrm{AB}^{2}=14$
Answer: (b)
Consider the following for the next two (02) items that follow:

Consider two lines whose direction ratios are $(2,-1,2)$ and ($k, 3,5$). They are inclined at an angle $\frac{\pi}{4}$.
28. What is the value of k ?
(a) 4
(b) 2
(c) 1
(d) -1

Solution:

$\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$\cos \frac{\pi}{4}=\frac{2 k-3+10}{\sqrt{2^{2}+(-1)^{2}+2^{2}} \sqrt{k^{2}+3^{2}+5^{2}}}$
$\frac{1}{\sqrt{2}}=\frac{2 k+7}{\sqrt{9} \sqrt{k^{2}+34}}$
$\frac{9}{2}=\frac{(2 k+7)^{2}}{k^{2}+34}$
$9 k^{2}+306=2\left(4 k^{2}+28 k+49\right)$
$k^{2}-56 k+208=0$
$k^{2}-2 k-54 k+208=0$
$(k-4)(k-52)=0$
$k=4$ or 52
29. What are the direction ratios of a line which is perpendicular to both the lines?
(a) $(1,2,10)$
(b) $(-1,-2,10)$
(c) $(11,12,-10)$
(d) $(11,2,-10)$

Solution:

Let direction cosine of line perpendicular to both lines is (a, b, c).
Since lines are perpendicular to each other therefore dot product of direction cosine is equal to zero.

$$
\begin{aligned}
& 2 a-b+2 c=0 \\
& 4 a+3 b+5 c=0 \\
& \frac{a}{\left|\begin{array}{cc}
-1 & 2 \\
3 & 5
\end{array}\right|}=\frac{b}{\left|\begin{array}{ll}
2 & 2 \\
5 & 4
\end{array}\right|}=\frac{c}{\left|\begin{array}{cc}
2 & -1 \\
4 & 3
\end{array}\right|} \\
& \frac{a}{-11}=\frac{b}{-2}=\frac{c}{10}
\end{aligned}
$$

Direction ratio $(a, b, c)=(11,2,-10)$
Answer: (d)
Consider the following for the next two (02) items that follow:

Let $\vec{a}=3 \hat{\imath}+3 \hat{\jmath}+3 \hat{k}$ and $\vec{c}=\hat{\jmath}-\hat{k}$. Let \vec{b} be such that $\vec{a} \cdot \vec{b}=27$ and $\vec{a} \times \vec{b}=9 \vec{c}$
30. What is \vec{b} equal to ?
(a) $3 \hat{i}+4 \hat{\jmath}+2 \hat{k}$
(b) $5 \hat{\imath}+2 \hat{\jmath}+2 \hat{k}$
(c) $5 \hat{\imath}-2 \hat{\jmath}+6 \hat{k}$
(d) $3 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}$

Solution:

Let $\vec{b}=b_{x} \hat{\imath}+b_{y} \hat{\jmath}+b_{z} \hat{k}$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=27$
$(3 \hat{\imath}+3 \hat{\jmath}+3 \hat{k}) \cdot\left(b_{x} \hat{\imath}+b_{y} \hat{\jmath}+b_{z} \hat{k}\right)=27$
$3 b_{x}+3 b_{y}+3 b_{z}=27$
$b_{x}+b_{y}+b_{z}=9---(1)$
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{c} & \hat{\jmath} & \hat{k} \\ 3 & 3 & 3 \\ b_{x} & b_{y} & b_{z}\end{array}\right|$
$=\hat{\imath}\left|\begin{array}{cc}3 & 3 \\ b_{y} & b_{z}\end{array}\right|-j\left|\begin{array}{cc}3 & 3 \\ b_{x} & b_{z}\end{array}\right|+k\left|\begin{array}{cc}3 & 3 \\ b_{x} & b_{y}\end{array}\right|$
$=3 \hat{i}\left(b_{z}-b_{y}\right)+3 \hat{\jmath}\left(b_{x}-b_{z}\right)+3 \mathrm{k}\left(\mathrm{b}_{\mathrm{y}}-\mathrm{b}_{\mathrm{x}}\right)$
$=9 \overrightarrow{\mathrm{c}}=9 \hat{\mathrm{j}}-9 \hat{\mathrm{k}}$
Compare L.H.S and R.H.S vectors we get,
$3\left(b_{z}-b_{y}\right)=0$
$b_{y}=b_{z}$
$3\left(b_{x}-b_{z}\right)=9$
$3\left(b_{y}-b_{x}\right)=-9$
From equation -1 we get
$b_{x}+b_{y}+b_{z}=9$
$b_{x}+2 b_{y}=9$
$b_{y}-b_{x}=-3$
Add above two equations we get,
$b_{x}+2 b_{y}+b_{y}-b_{x}=9-3$
$3 b_{y}=6$
$\mathrm{b}_{\mathrm{y}}=2=\mathrm{b}_{\mathrm{z}}$
$b_{x}+2 b_{y}=9$
$b_{x}+4=9$
$\mathrm{b}_{\mathrm{x}}=5$
$\overrightarrow{\mathrm{b}}=\mathrm{b}_{\mathrm{x}} \hat{\imath}+\mathrm{b}_{\mathrm{y}} \hat{\jmath}+\mathrm{b}_{\mathrm{z}} \hat{\mathrm{k}}=5 \hat{\imath}+2 \hat{\jmath}+2 \hat{\mathrm{k}}$
Second method: Checking method
Since $\vec{a} \times \vec{b}=9 \vec{c}$ therefore vectors \vec{b} and \vec{c} are perpendicular to each other.
$\overrightarrow{\mathrm{b}} . \overrightarrow{\mathrm{c}}=0$

Check each solution one by one
$(3 \hat{\imath}+4 \hat{\jmath}+2 \hat{k}) \cdot(\hat{\jmath}-\hat{k})=4-2=2$
$(5 \hat{\imath}+2 \hat{\jmath}+2 \hat{k}) \cdot(\hat{\jmath}-\hat{k})=2-2=0$
$(5 \hat{\imath}-2 \hat{\jmath}+6 \hat{k}) \cdot(\hat{\jmath}-\hat{k})=-2-6=-8$
$(3 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}) \cdot(\hat{\jmath}-\hat{k})=3-4=-1$
Answer: (b)
31. What is the angle between $(\vec{a}+\vec{b})$ and \vec{c} ?
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{6}$

Solution:

Angle between $(\vec{a}+\vec{b})$ and \vec{c} is
$\cos \theta=\frac{(\vec{a}+\vec{b}) \cdot \vec{c}}{|\vec{a}+\vec{b}||\vec{c}|}$
$\vec{a}+\vec{b}=(3 \hat{\imath}+3 \hat{\jmath}+3 \hat{k})+(5 \hat{\imath}+2 \hat{\jmath}+2 \hat{k})$
$\vec{a}+\vec{b}=8 \hat{\imath}+5 \hat{\jmath}+5 \hat{k}$
$(\vec{a}+\vec{b}) \cdot \vec{c}=(8 \hat{\imath}+5 \hat{\jmath}+5 \hat{k}) \cdot(\hat{\jmath}-\hat{k})=0$
$\cos \theta=0$
$\theta=\frac{\pi}{2}$
Answer: (a)
Consider the following for the next two (02) items that follow:

Let a vector $\vec{a}=4 \hat{\imath}-8 \hat{\jmath}+\hat{k}$ make angles α, β, γ with the positive directions of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes respectively.

32 What is $\cos \alpha$ equal to ?
(a) $\frac{1}{3}$
(b) $\frac{4}{9}$
(c) $\frac{5}{9}$
(d) $\frac{2}{3}$

Solution:

$\cos \alpha=\frac{\overrightarrow{\mathrm{a}} . \hat{1}}{|\overrightarrow{\mathrm{a}}|}$
a. $. \hat{i}=4$
$|\vec{a}|=\sqrt{4^{2}+8^{2}+1^{2}}=\sqrt{81}$
$\cos \alpha=\frac{4}{9}$

Answer: (b)

33 What is $\cos 2 \beta+\cos 2 \gamma$ equal to?
(a) $-\frac{32}{81}$
(b) $-\frac{16}{81}$
(c) $\frac{16}{81}$
(d) $\frac{32}{81}$

$$
\begin{aligned}
\cos \beta & =\frac{\overrightarrow{\mathrm{a}} \cdot \hat{\jmath}}{|\overrightarrow{\mathrm{a}}|} \\
\overrightarrow{\mathrm{a}} \cdot \hat{\jmath} & =-8 \\
\cos \beta & =\frac{-8}{9} \\
\cos \gamma & =\frac{\overrightarrow{\mathrm{a}} \cdot \hat{\mathrm{k}}}{|\overrightarrow{\mathrm{a}}|} \\
\overrightarrow{\mathrm{a}} \cdot \hat{\mathrm{k}} & =1 \\
\cos \gamma & =\frac{1}{9}
\end{aligned}
$$

$\cos 2 \beta+\cos 2 \gamma$

$$
\begin{aligned}
& =2\left(\cos ^{2} \beta+\cos ^{2} \gamma\right)-2 \\
& =2\left(\left(\frac{-8}{9}\right)^{2}+\left(\frac{1}{9}\right)^{2}\right)-2 \\
& =-\frac{32}{81}
\end{aligned}
$$

Answer: (a)
Consider the following for the next two (02) items that follow:

The position vectors of two points A and B are $\hat{\imath}-\hat{\jmath}$ and $\hat{\jmath}+\hat{k}$ respectively.

34 Consider the following points

1. $(-1,-3,1)$
2. $(-1,3,2)$
3. $(-2,5,3)$

Which of the above points lie on the line joining A and B ?
(a) 1 and 2 only
(b) 2 and 3 only
(c) 1 and 3 only
(d) 1, 2 and 3

Solution

$$
\overrightarrow{\mathrm{AB}}=-\hat{\mathrm{l}}+2 \hat{\jmath}+\hat{\mathrm{k}}
$$

Let point $P \equiv(-1,-3,1)$

$$
\begin{aligned}
& \overrightarrow{\mathrm{AP}}=\overrightarrow{\mathrm{OP}}-\overrightarrow{\mathrm{OA}} \\
& =(-\hat{\imath}-3 \hat{\jmath}+\hat{\mathrm{k}})-(\hat{\imath}-\hat{\jmath}) \\
& =-2 \hat{\imath}-2 \hat{\jmath}+\hat{\mathrm{k}}
\end{aligned}
$$

If P lie on line joining A and B then $\overrightarrow{A P}$ is parallel to $\overrightarrow{\mathrm{AB}}$.

$$
\overrightarrow{\mathrm{AP}} \neq \lambda \overrightarrow{\mathrm{AB}}
$$

Let point $Q \equiv(-1,3,2)$

$$
\begin{aligned}
& \overrightarrow{\mathrm{AQ}}=\overrightarrow{\mathrm{OQ}}-\overrightarrow{\mathrm{OA}} \\
& =(-\hat{\imath}+3 \hat{\jmath}+2 \hat{\mathrm{k}})-(\hat{\imath}-\hat{\jmath}) \\
& =-2 \hat{\imath}+4 \hat{\jmath}+2 \hat{\mathrm{k}}
\end{aligned}
$$

Since $\overrightarrow{A Q}=2 \overrightarrow{A B}$ therefore point Q lies on line joining $A B$.
Let point $R \equiv(-2,5,3)$
$\overrightarrow{\mathrm{AR}}=\overrightarrow{\mathrm{OR}}-\overrightarrow{\mathrm{OA}}$
$=(-2 \hat{\imath}+5 \hat{\jmath}+3 \hat{k})-(\hat{\imath}-\hat{\jmath})$
$=-3 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}$
Since $\overrightarrow{\mathrm{AR}}=3 \overrightarrow{\mathrm{AB}}$ therefore point R lies on line joining $A B$.
Answer: (b)
35. What is the magnitude of $\overrightarrow{\mathrm{AB}}$?
(a) 2
(b) 3
(c) $\sqrt{6}$
(d) $\sqrt{3}$

Solution:

$$
\begin{aligned}
\overrightarrow{\mathrm{AB}} & =\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}} \\
& =(\hat{\jmath}+\hat{\mathrm{k}})-(\hat{\imath}-\hat{\jmath}) \\
& =-\hat{\imath}+2 \hat{\jmath}+\hat{k}
\end{aligned}
$$

$$
|\overrightarrow{\mathrm{AB}}|=\sqrt{(-1)^{2}+2^{2}+1^{2}}=\sqrt{6}
$$

Answer: (c)

Consider the following for the next three

(03) items that follow:

Let $f(x)=P e^{x}+Q e^{2 x}+R e^{3 x}$, where P, Q, R are real numbers. Further $f(0)=6, f^{\prime}(\ln 3)=$ 282 and $\int_{0}^{\ln 2} f(x) d x=11$
36. What is the value of Q ?
(a) 1
(b) 2
(c) 3
(d) 4

Solution:
$\mathrm{f}(\mathrm{x})=\mathrm{Pe}^{\mathrm{x}}+\mathrm{Qe}^{2 \mathrm{x}}+\mathrm{Re}^{3 \mathrm{x}}$
$\mathrm{f}(0)=\mathrm{Pe}^{0}+\mathrm{Qe}^{2 \times 0}+\mathrm{Re}^{3 \times 0}$
$\mathrm{f}(0)=\mathrm{P}+\mathrm{Q}+\mathrm{R}$
$P+Q+R=6$
$f^{\prime}(\mathrm{x})=\mathrm{Pe}^{\mathrm{x}}+2 \mathrm{Qe}^{2 \mathrm{x}}+3 \mathrm{Re}^{3 \mathrm{x}}$
$\mathrm{f}^{\prime}(\ln 3)=\mathrm{Pe}^{\ln 3}+2 \mathrm{Qe}^{2 \ln 3}+3 \mathrm{Re}^{3 \ln 3}$
$3 P+18 Q+81 R=282$
$\int_{0}^{\ln 2} f(x) d x=11$
$\int_{0}^{\ln 2} \mathrm{Pe}^{\mathrm{x}}+\mathrm{Qe}^{2 \mathrm{x}}+\mathrm{Re}^{3 \mathrm{x}} \mathrm{dx}=11$
$\mathrm{Pe}^{\mathrm{x}}+\frac{\mathrm{Qe}^{2 \mathrm{x}}}{2}+\left.\frac{\mathrm{Re}^{3 \mathrm{x}}}{3}\right|_{0} ^{\ln 2}=1$
$\mathrm{Pe}^{\ln 2}+\frac{\mathrm{Qe}^{2 \ln 2}}{2}+\frac{\mathrm{Re}^{3 \ln 2}}{3}-\mathrm{Pe}^{0}-\frac{\mathrm{Qe}^{2 \times 0}}{2}$

$$
-\frac{\mathrm{Re}^{3 \times 0}}{3}=11
$$

$2 P+2 Q+\frac{8}{3} R-P-\frac{Q}{2}-\frac{R}{3}=11$
$P+\frac{3}{2} Q+\frac{7}{3} R=11$
$6 P+9 Q+14 R=66$
Solve these three linear equations we get,
$P+Q+R=6$
$3 P+18 Q+81 R=282$
$6 P+9 Q+14 R=66$
$P=1, Q=2$ and $R=3$
Answer: (b)
37. What is the value of R ?
(a) 1
(b) 2
(c) 3
(d) 4

Answer: (c)

38. What is $f^{\prime}(0)$ equal to?
(a) 18
(b) 16
(c) 15
(d) 14

Solution:

$f^{\prime}(x)=P e^{x}+2 Q e^{2 x}+3 R e^{3 x}$
$P=1, Q=2$ and $R=3$
$f^{\prime}(x)=e^{x}+4 e^{2 x}+9 e^{3 x}$
$f^{\prime}(0)=e^{0}+4 e^{2 \times 0}+9 e^{3 \times 0}=14$
Answer: (d)

Consider the following for the next three (03) items that follow:

Let $f(x)=\left|\begin{array}{ccc}\cos x & x & 1 \\ 2 \sin x & x^{2} & 2 x \\ \tan x & x & 1\end{array}\right|$
39 What is $f(0)$ equal to ?
(a) -1
(b) 0
(c) 1
(d) 2

Solution:

$f(x)=\left|\begin{array}{ccc}\cos x & x & 1 \\ 2 \sin x & x^{2} & 2 x \\ \tan x & x & 1\end{array}\right|$
$f(0)=\left|\begin{array}{ccc}\cos 0 & 0 & 1 \\ 2 \sin 0 & 0^{2} & 2 \times 0 \\ \tan 0 & 0 & 1\end{array}\right|=0$
40. Let $f(x)=\left|\begin{array}{ccc}\cos x & x & 1 \\ 2 \sin x & x^{2} & 2 x \\ \tan x & x & 1\end{array}\right|$ What is $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ equals to?
(a) -1
(b) 0
(c) 1
(d) 2

Solution: $f(x)=\left|\begin{array}{ccc}\cos x & x & 1 \\ 2 \sin x & x^{2} & 2 x \\ \tan x & x & 1\end{array}\right|$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} \frac{1}{x}\left|\begin{array}{ccc}
\cos x & x & 1 \\
2 \sin x & x^{2} & 2 x \\
\tan x & x & 1
\end{array}\right| \\
& \quad=\lim _{x \rightarrow 0} \frac{x}{x}\left|\begin{array}{ccc}
\cos x & 1 & 1 \\
2 \sin x & x & 2 x \\
\tan x & 1 & 1
\end{array}\right| \\
& \quad=\lim _{x \rightarrow 0}\left|\begin{array}{ccc}
\cos x & 1 & 1 \\
2 \sin x & x & 2 x \\
\tan x & 1 & 1
\end{array}\right|
\end{aligned}
$$

$$
=\left|\begin{array}{ccc}
\cos 0 & 1 & 1 \\
2 \sin 0 & 0 & 0 \\
\tan x & 1 & 1
\end{array}\right|=0
$$

Answer: (b)
41. Let $f(x)=\left|\begin{array}{ccc}\cos x & x & 1 \\ 2 \sin x & x^{2} & 2 x \\ \tan x & x & 1\end{array}\right|$ What is $\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}$ equals to?
(a) -1
(b) 0
(c) 1
(d) 2

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{1}{x^{2}}\left|\begin{array}{ccc}
\cos x & x & 1 \\
2 \sin x & x^{2} & 2 x \\
\tan x & x & 1
\end{array}\right|
$$

$\lim _{x \rightarrow 0} \frac{1}{x}\left|\begin{array}{ccc}\cos x & \frac{x}{x} & 1 \\ 2 \sin x & \frac{x^{2}}{x} & 2 x \\ \tan x & \frac{x}{x} & 1\end{array}\right|$

$$
=\lim _{x \rightarrow 0} \frac{1}{x}\left|\begin{array}{ccc}
\cos x & 1 & 1 \\
2 \sin x & x & 2 x \\
\tan x & 1 & 1
\end{array}\right|
$$

$$
=\lim _{x \rightarrow 0}\left|\begin{array}{ccc}
\cos x & 1 & 1 \\
\frac{2 \sin x}{x} & \frac{x}{x} & \frac{2 x}{x} \\
\tan x & 1 & 1
\end{array}\right|
$$

$$
=\lim _{x \rightarrow 0}\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 2 \\
0 & 1 & 1
\end{array}\right|=-1
$$

42. For what value of m with $m<0$, is the area bounded by the lines $y=x, y=m x$ and $x=2$ equal to 3 ?
(a) $-\frac{1}{2}$
(b) -1
(c) $-\frac{3}{2}$
(d) -2

Solution:

Area bounded by line $y=x, y=m x$ and $x=2$. m < 0

Area $=\frac{1}{2} \times 2 \times 2+\frac{1}{2} \times 2 \times 2|m|$
Given Area $=3$
$3=2+2|m|$
$m=-\frac{1}{2}$
43. What is the derivative of $\operatorname{cosec}\left(x^{0}\right)$?
(a) $-\operatorname{cosec}\left(x^{\circ}\right) \cot \left(x^{o}\right)$
(b) $-\frac{\pi}{180} \operatorname{cosec}\left(x^{0}\right) \cot \left(x^{0}\right)$
(c) $\frac{\pi}{180} \operatorname{cosec}\left(x^{0}\right) \cot \left(x^{0}\right)$
(d) $-\frac{\pi}{180} \operatorname{cosec}(x) \cot (x)$

Solution:

$\frac{d(\operatorname{Cosec} x)}{d x}=-\operatorname{cosec} x \cot x$
$\operatorname{Cosec} x^{0}=\operatorname{cosec} \frac{\pi}{180} x$
$\frac{d\left(\operatorname{Cosec} x^{0}\right)}{d x}$
$=\frac{d\left(\operatorname{Cosec} x^{0}\right)}{d x^{0}} \frac{d x^{0}}{d x}$
$=-\frac{\pi}{180} \operatorname{cosec} x^{0} \cot x^{0}$
44. A solution of the differential equation $\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}=0$ is
(a) $y=2 x$
(b) $y=2 x+4$
(c) $y=x^{2}-1$
(d) $y=\frac{\left(x^{2}-2\right)}{2}$

Solution:

$\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}=0$
$\frac{d y}{d x}=x$
$\int d y=\int x d x$
$y=\frac{x^{2}}{2}+c$
45. If $f(x)=x^{2}+2$ and $g(x)=2 x-3$, then what is $(f g)(1)$ equal to
(a) 3
(b) 1
(c) -2
(d) -3
$g(x)=2 x-3$
$g(1)=2 \times 1-3=-1$
$f(g(1))=f(-1)=3$
46. What is the range of the function $f(x)=$ $x+|x|$ if the domain is the set of real numbers?
(a) $(0, \infty)$
(b) $[0, \infty]$
(c) $(-\infty, \infty)$
(d) $[1, \infty)$

Solution:

$y=x+|x|$
$y= \begin{cases}2 x & x>0 \\ 0 & x \leq 0\end{cases}$
Range of function y is $[0, \infty$]
47. If $f(x)=x\left(4 x^{2}-3\right)$, then what is $f(\sin \theta)$ equal to ?
(a) $-\sin (3 \theta)$
(b) $-\cos (3 \theta)$
(c) $\sin (3 \theta)$
(d) $-\sin (4 \theta)$

Solution:

$f(x)=x\left(4 x^{2}-3\right)$
$f(\sin \theta)=4 \sin ^{3} \theta-3 \sin \theta$
$\sin 3 \theta=\sin (2 \theta+\theta)$
$=\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta$
$=2 \sin \theta \cos ^{2} \theta+\left(1-2 \sin ^{2} \theta\right) \sin \theta$
$=2 \sin \theta\left(1-\sin ^{2} \theta\right)+\sin \theta-2 \sin ^{3} \theta$
$=3 \sin \theta-4 \sin ^{3} \theta$

$$
f(\sin \theta)=4 \sin ^{3} \theta-3 \sin \theta=-\sin (3 \theta)
$$

48 What is $\lim _{x \rightarrow 5} \frac{5-x}{|x-5|}$
(a) -1
(b) 0

Solution: $f(x)=x^{2}+2$
(c) 1
(d) Limit does not exist

Solution:

$\lim _{x \rightarrow 5^{-}} \frac{5-x}{|x-5|}=\lim _{x \rightarrow 5^{-}} \frac{5-x}{5-x}=1$
$\lim _{x \rightarrow 5^{+}} \frac{5-x}{|x-5|}=\lim _{x \rightarrow 5^{+}} \frac{5-x}{x-5}=-1$
$\lim _{x \rightarrow 5^{-}} \frac{5-x}{|x-5|} \neq \lim _{x \rightarrow 5^{+}} \frac{5-x}{|x-5|}$

Answer: (d)
$100 \lim _{x \rightarrow 1} \frac{x^{9}-1}{x^{3}-1}$

Apply L Hospital rule

$\lim _{x \rightarrow 1} \frac{9 x^{8}}{3 x^{2}}=3$
49. Let A and B be two independent events such that $P(\bar{A})=0.7, P(\bar{B})=k, P(A U B)=$ 0.8 , what is the value of k ?
(a) $\frac{5}{7}$
(b) $\frac{4}{7}$
(c) $\frac{2}{7}$
(d) $\frac{1}{7}$

If A and B are two independent events then $P(A \cap B)=P(A) \times P(B)$.

Given $P(\bar{A})=0.7$

$$
\begin{gathered}
P(\bar{B})=k . \text { and } P(A \cup B)=0.8 \\
P(A)=1-P(\bar{A})=1-0.7=0.3 \\
P(B)=1-P(\bar{B})=1-k \\
P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
0.8=0.7+(1-k)-(1-k) \times 0.7 \\
k=\frac{2}{7}
\end{gathered}
$$

50. A baised coin with the probability of getting head equal to $\frac{1}{4}$ is tossed five times. What is
the probability of getting tail in all the first four tosses followed by head?
(a) $\frac{81}{512}$
(b) $\frac{81}{1024}$
(c) $\frac{81}{256}$
(d) $\frac{27}{1024}$

If a coin is tossed five times then occurrence of five tail followed by head
$E=\{$ TTTTH $\}$
Probability of Event $P(E)=\left(\frac{3}{4}\right)^{4} \times \frac{1}{4}=\frac{81}{1024}$
51. A coin is baised so that head comes up thrice as likely as tails. In four independent tosses of the coin, what is probability of getting exactly three heads?
a) $\frac{81}{256}$
b) $\frac{27}{64}$
c) $\frac{27}{256}$

$$
\begin{array}{r}
\frac{9}{256} \\
P(\text { Head })+P(\text { Tail })=1 \\
P(\text { Head })=3 P(\text { Tail }) \\
4 P(\text { Tail })=1 \\
P(\text { Tail })=\frac{1}{4} \\
P(\text { Head })=\frac{3}{4}
\end{array}
$$

If coin is tossed four times then probability of occurrence of three head and one tail

$$
=\left(\frac{3}{4}\right)^{3} \times\left(\frac{1}{4}\right)^{1} \times C(4,3)=\frac{27}{64}
$$

52. If G is the geometric mean of numbers 1 , $2,2^{2}, 2^{3}, \ldots ., 2^{n-1}$, then what is the value of $1+2 \log _{2} G$?
(a) 1
(b) 4
(c) $\mathrm{n}-1$
(d) n

$$
\begin{gathered}
G=\sqrt[n]{2^{0+1+2+3+\cdots+n-1}} \\
0+1+2+3+\cdots+n-1=\frac{n(0+n-1)}{2} \\
G=2^{\frac{n-1}{2}} \\
2 \log _{2} G=2 \log _{2} 2^{\frac{n-1}{2}}=n-1 \\
1+2 \log _{2} G=n
\end{gathered}
$$

53. Three dice are thrown. What is the probability that each face shows only multiples of 3 ?
(a) $1 / 9$
(b) $1 / 18$
(c) $1 / 27$
(d) $1 / 3$

Solution:

$$
\begin{gathered}
n(S)=6^{3}=216 \\
E=\{(3,3,3),(6,6,6)\} \\
p(E)=\frac{2}{216}=\frac{1}{108}
\end{gathered}
$$

Answer: (*)
54. What is the probability that the month of December has 5 Sundays?
(a) 1
(b) $1 / 4$
(c) $3 / 7$
(d) $2 / 7$

Solution:

Total number of days in December is 31 .
So 4 weeks and three days. So last three days are in sequence. List of all cases of last three days.

Sample Space $S=\{(1,2,3)(2,3,4),(3,4,5)$, $(4,5,6),(5,6,7),(6,7,1),(7,1,2)\}$
1, 2, 3, 4, 5, 6, 7 correspond to Monday to Sunday.
$n(S)=7$
$n(E)=3$
$P(E)=\frac{n(E)}{n(S)}=\frac{3}{7}$
55. A natural number n is chosen from the first 50 natural numbers. What is the probability that $+\frac{50}{n}<50$?
(a) $\frac{23}{25}$
(b) $\frac{47}{50}$
(c) $\frac{24}{25}$
(d) $\frac{49}{25}$

Solution: Let S is set of natural number which is less than equal to 50 .
$S=\{1,2,3,4, \ldots .50\}$
$n(S)=50$
Let E is set of natural number such that $n+\frac{50}{n}<50$.
$E=\{2,3,4, \ldots, 48\}$
Let E^{\prime} is a set of natural number such that $n+\frac{50}{n}>50$.

$$
E^{\prime}=\{1,49,50\}
$$

$$
\begin{gathered}
P\left(E^{\prime}\right)=\frac{n\left(E^{\prime}\right)}{n(S)}=\frac{3}{50} \\
P(E)=1-P\left(E^{\prime}\right)=1-\frac{3}{50}=\frac{47}{50}
\end{gathered}
$$

56. If H is the harmonic mean of numbers 1,2 , $2^{2}, 2^{3}, \ldots ., 2^{n-1}$, then what is n / H equal to?
(a) $2-\frac{1}{2^{n+1}}$
(b) $2-\frac{1}{2^{n-1}}$
(c) $2+\frac{1}{2^{n-1}}$
(d) $2-\frac{1}{2^{n}}$

Solution: Harmonic mean of numbers a, b, c, \ldots

$$
\begin{gathered}
\frac{1}{H}=\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+. .}{n} \\
\frac{n}{H}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\ldots \\
\frac{n}{H}=\frac{1}{1}+\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{n-1}} \\
\frac{n}{H}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{1\left(1-\left(\frac{1}{2}\right)^{n}\right)}{1-\frac{1}{2}}=2-\frac{1}{2^{n-1}}
\end{gathered}
$$

57. What is the derivative of $\sin ^{2} x$ with respect to $\cos ^{2} x$
(a) -1
(b) 1
(c) $\sin 2 x$
(d) $\cos 2 x$

Solution:

$$
\frac{d\left(\sin ^{2} x\right)}{d \cos ^{2} x}=\frac{d\left(1-\cos ^{2} x\right)}{d\left(\cos ^{2} x\right)}=-1
$$

58. Consider the following statements:
59. $f(x)=\ln x$ is increasing in $(0, \infty)$
60. $\mathrm{g}(\mathrm{x})=e^{x}+e^{\frac{1}{x}}$ is decreasing in $(0, \infty)$

Which of the statements given above is/are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2

Answer: (c)
Consider the following for the next three (03) items that follow:

Let $f(x)=|\ln x|, x \neq 1$
59. What is the derivative of $f(x)$ at $x=0.5$?
(a) -2
(b) -1
(c) 1
(d) 2

Solution: $f(x)=-\ln x \quad 0<x \leq 1$

$$
\frac{d f(x)}{d x}=-\frac{1}{x}=-\frac{1}{0.5}=-2
$$

60. What is the derivative of $f(x)$ at $x=2$?
(a) $-\frac{1}{2}$
(b) -1
(c) $\frac{1}{2}$
(d) 2

Solution: : $f(x)=\ln x \quad 1 \leq x \leq \infty$

$$
\frac{d f(x)}{d x}=\frac{1}{x}=\frac{1}{2}=0.5
$$

Consider the following for the next two (02) items that follow:

A quadratic equation is given by
$(3+2 \sqrt{2}) x^{2}-(4+2 \sqrt{3}) x+(8+4 \sqrt{3})=0$
61. What is the HM of the roots of the equation?
(a) 2
(b) 4
(c) $2 \sqrt{2}$
(d) $2 \sqrt{3}$

Solution: Roots of the quadratic equation of $(3+2 \sqrt{2}) x^{2}-(4+2 \sqrt{3}) x+(8+4 \sqrt{3})=0$

$$
\alpha+\beta=-\frac{b}{a}=\frac{4+2 \sqrt{3}}{3+2 \sqrt{2}}
$$

$$
\alpha \beta=\frac{c}{a}=\frac{8+4 \sqrt{3}}{3+2 \sqrt{2}}
$$

HM of the roots of the equation

$$
H M=\frac{2 \alpha \beta}{\alpha+\beta}=\frac{2(8+4 \sqrt{3})}{4+2 \sqrt{3}}=4
$$

Consider the following for the next two(02)

items that follow :

Let $\sin \beta$ be the GM of $\sin \alpha$ and $\cos \alpha ; \tan \gamma$ be the AM of $\sin \alpha$ and $\cos \alpha$.
62. What is $\cos 2 \beta$ equal to?
(a) $(\cos \alpha-\sin \alpha)^{2}$
(b) $(\cos \alpha+\sin \alpha)^{2}$
(C) $(\cos \alpha-\sin \alpha)^{3}$
(d) $\frac{(\cos \alpha-\sin \alpha)}{2}$

Solution: $\sin \beta=\sqrt{\sin \alpha \cos \alpha}$
$\cos 2 \beta=1-2 \sin ^{2} \beta$
$=\sin ^{2} \alpha+\cos ^{2} \alpha-2 \sin \alpha \cos \alpha$
$=(\cos \alpha-\sin \alpha)^{2}$
63. A die is thrown 10 times and obtained the following outputs: $1,2,1,1,2,1,4,6,5,4$ What will be the mode of data so obtained?
(a) 6
(b) 4
(c) 2
(d) 1

Solution:

Data	Frequency
1	4
2	2
4	2
5	1
6	1

Maximum frequency is 4 of data 1 .
So mode is equal to 1.

Consider the following for the next two (02) items that follow:

Let $f(x)=\sin \left[\pi^{2}\right] x+\cos \left[-\pi^{2}\right] x$ where [.] is a greatest integer function
64. What is $f\left(\frac{\pi}{2}\right)$ equal to?
(a) -1
(b) 0
(c) 1
(d) 2

Solution:

$$
\begin{aligned}
& {\left[\pi^{2}\right]=9 \quad 9<} \\
& \left.\begin{array}{rl}
{\left[-\pi^{2}<10\right.}
\end{array}\right]-10-10<-\pi^{2}<-9 \\
& \begin{aligned}
f(x)=\sin \left[\pi^{2}\right] x & +\cos \left[-\pi^{2}\right] x \\
& =\sin 9 x+\cos (-10 x) \\
& =\sin 9 x+\cos 10 x
\end{aligned} \\
& \begin{aligned}
f\left(\frac{\pi}{2}\right)=\sin \left(\frac{9 \pi}{2}\right) & +\cos \left(\frac{10 \pi}{2}\right) \\
= & \sin \left(4 \pi+\frac{\pi}{2}\right)+\cos (5 \pi) \\
= & \sin \frac{\pi}{2}-1=1-1=0
\end{aligned}
\end{aligned}
$$

65. What is $f\left(\frac{\pi}{4}\right)$ equal to?
(a) $-\frac{1}{\sqrt{2}}$
(b) -1
(c) 1
(d) $\frac{1}{\sqrt{2}}$

Solution:

$$
\begin{aligned}
f\left(\frac{\pi}{4}\right)=\sin \left(\frac{9 \pi}{4}\right) & +\cos \left(\frac{10 \pi}{4}\right) \\
& =\sin \left(2 \pi+\frac{\pi}{4}\right)+\cos \left(2 \pi+\frac{\pi}{2}\right) \\
& =\sin \frac{\pi}{4}+\cos \left(\frac{\pi}{2}\right)=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Consider the following for the next two (02) items that follow:

Let $=\int_{a}^{b} \frac{|x|}{x} d x, \mathrm{a}<\mathrm{b}$
66. What is I equal to when $\mathrm{a}<0<\mathrm{b}$?
(a) $a+b$
(b) $a-b$
(c) $b-a$
(d) $\frac{(a+b)}{2}$

Solution:

$I=\int_{a}^{b} \frac{|x|}{x} d x$
$=\int_{a}^{0} \frac{-x}{x} d x+\int_{0}^{b} \frac{x}{x} d x$
$=\int_{0}^{a} d x+\int_{0}^{b} d x$
$=a+b$
Property of definite integral
$\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
$\int_{a}^{0} \frac{-x}{x} d x=\int_{a}^{0}-d x=-\int_{0}^{a}-d x=\int_{0}^{a} d x$
67. What is I equal to when $\mathrm{a}<\mathrm{b}<0$?
(a) $a+b$
(b) $a-b$
(c) $b-a$
(d) $\frac{(a+b)}{2}$

Solution:

$$
\begin{aligned}
& I=\int_{a}^{b} \frac{|x|}{x} d x \\
& =\int_{a}^{b} \frac{-x}{x} d x \\
& =\int_{a}^{b}-d x \\
& =-(b-a) \\
& =a-b
\end{aligned}
$$

Consider the following for the next three

 (03) items that follow:Let $f(x)=|\ln x|, x \neq 1$
68. What is the derivative of $f(x)$ at $x=0.5$?
(e) -2
(b) -1
(c) 1
(d) 2

Solution:
$f(x)=-\ln x \quad 0<x<1$
$f^{\prime}(x)=-\frac{1}{x} \quad 0<x<1$
$f^{\prime}(0.5)=-\frac{1}{0.5}=-2$
69. What is the derivative of $f(x)$ at $x=2$?
(e) $-\frac{1}{2}$
(b) -1
(c) $\frac{1}{2}$
(d) 2

Solution:

$f(x)=\ln x \quad 1<x$
$f^{\prime}(x)=\frac{1}{x}$
$f^{\prime}(2)=\frac{1}{2}$
70. What is the derivative of fo $f(x)$, where 1 $<x<2$?
(a) $\frac{1}{\ln x}$
(b) $\frac{1}{x \ln x}$
(c) $-\frac{1}{\ln x}$
(d) $-\frac{1}{x \ln x}$

Solution: If $1<x<2$ then $\ln 1<\ln x<\ln 2$

$$
\begin{gathered}
\ln 2<1 \\
0<\ln x<1
\end{gathered}
$$

$$
\text { fo } f(x)=|\ln (f(x))| 0<f(x)=\ln x<1
$$

$$
\text { Let } y=f o f(x)=-\ln (\ln x)
$$

$$
\frac{d y}{d x}=-\frac{1}{x \ln x}
$$

Consider the following for the next two (02)

 items that follow:Let $f(x)=\left[\begin{array}{c}x+6, \quad x \leq 1 \\ p x+q, \quad 1<x<2 \\ 5 x, \quad x \geq 2\end{array}\right.$
and $f(x)$ is continuous
71. What is the value of p ?
(a) 2
(b) 3
(c) 4
(d) 5

Solution: $\lim _{x \rightarrow 1^{-}} x+6=7$

$$
\begin{gathered}
\lim _{x \rightarrow 1^{+}} p x+q=p+q \\
f(1)=7
\end{gathered}
$$

if $f(x)$ is continuous at $x=1$ then

$$
\begin{gathered}
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1) \\
p+q=7
\end{gathered}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} p x+q & =2 p+q \\
\lim _{x \rightarrow 2^{+}} 5 x & =10
\end{aligned}
$$

$$
f(2)=10
$$

if (x) is continuous at $x=2$ then

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)
$$

$$
2 p+q=10
$$

$p=3$ and $q=4$
72. What is the value of q ?
(a) 2
(b) 3
(c) 4
(d) 5
73. If Δ is the value of the determinant $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ then what is the value of the following determinant?

$$
\begin{gathered}
\left|\begin{array}{lll}
p a_{1} & b_{1} & q c_{1} \\
p a_{2} & b_{2} & q c_{2} \\
p a_{3} & b_{3} & q c_{2}
\end{array}\right| \\
(p \neq 0 \text { or } 1, q \neq 0 \text { or } 1)
\end{gathered}
$$

(a) $p \Delta$
(b) $q \Delta$
(c) $(p+q) \Delta$
(d) $p q \Delta$

Solution: $\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$
$\Delta_{1}=\left|\begin{array}{lll}p a_{1} & b_{1} & q c_{1} \\ p a_{2} & b_{2} & q c_{2} \\ p a_{3} & b_{3} & q c_{2}\end{array}\right|$
$\Delta_{1}=p q\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{2}\end{array}\right|=p q \Delta$

