
5 
Software Engineering (R15) 

 

Software Process 

A process is a collection of activities, actions, and tasks that are performed when some 

work product is to be created. 

An activity strives to achieve a broad objective (e.g., communication with stakeholders) 

and is applied regardless of the application domain, size of the project, complexity of the effort, 

or degree of rigor with which software engineering is to be applied. 

An action encompasses a set of tasks that produce a major work product (e.g., an 

architectural design model). 

A task focuses on a small, but well-defined objective (e.g., conducting a unit test) that 

produces a tangible outcome. 

A process framework establishes the foundation for a complete software engineering 

process by identifying a small number of framework activities that are applicable to all software 

projects, regardless of their size or complexity. In addition, the process framework encompasses 

a set of umbrella activities that are applicable across the entire software process. 

A generic process framework for software engineering encompasses five activities: 

 Communication. Before any technical work can commence, it is critically important to 

communicate and collaborate with the customer. The intent is to understand stakeholders 

objectives for the project and to gather requirements that help define software features 

and functions. 

 Planning. Any complicated journey can be simplified if a map exists. A software project 

is a complicated journey, and the planning activity creates a “map” that helps guide the 

team as it makes the journey. The map—called a software project plan—defines the 

software engineering work by describing the technical tasks to be conducted, the risks 

that are likely, the resources that will be required, the work products to be produced, and 

a work schedule. 

 Modeling. Creation of models to help developers and customers understand the requires 

and software design 

 Construction. This activity combines code generation and the testing that is required to 

uncover errors in the code. 

 Deployment. The software is delivered to the customer who evaluates the delivered 

product and provides feedback based on the evaluation. 



6 
Software Engineering (R15) 

 

These five generic framework activities can be used during the development of small, simple 

programs, the creation of large Web applications, and for the engineering of large, complex 

computer-based systems. 

Software engineering process framework activities are complemented by a number of 

Umbrella Activities. In general, umbrella activities are applied throughout a software project 

and help a software team manage and control progress, quality, change, and risk. Typical 

umbrella activities include: 

 

 Software project tracking and control—allows the software team to assess progress 

against the project plan and take any necessary action to maintain the schedule. 

 Risk management—assesses risks that may affect the outcome of the project or the 

quality of the product. 

 Software quality assurance—defines and conducts the activities required to ensure 

software quality. 

 Technical reviews—assesses software engineering work products in an effort to uncover 

and remove errors before they are propagated to the next activity. 

 Measurement—defines and collects process, project, and product measures that assist 

the team in delivering software that meets stakeholders needs; can be used in conjunction 

with all other framework and umbrella activities. 

 Software configuration management—manages the effects of change throughout the 

software process. 

 Reusability management—defines criteria for work product reuse and establishes 

mechanisms to achieve reusable components. 

 Work product preparation and production—encompasses the activities required to 

create work products such as models, documents, logs, forms, and lists. 

Attributes for Comparing Process Models 

 Overall flow and level of interdependencies among tasks 

 Degree to which work tasks are defined within each framework activity 

 Degree to which work products are identified and required 

 Manner in which quality assurance activities are applied 

 Manner in which project tracking and control activities are applied 

 Overall degree of detail and rigor of process description 

 Degree to which stakeholders are involved in the project 

 Level of autonomy given to project team 



7 
Software Engineering (R15) 

 

 Degree to which team organization and roles are prescribed 

 

The Software Engineering Practice 
The Essence of Practice 

 Understand the problem (communication and analysis) 

 Plan a solution (software design) 

 Carry out the plan (code generation) 

 Examine the result for accuracy (testing and quality assurance) 



8 
Software Engineering (R15) 

 

Understand the Problem 

 Who are the stakeholders? 

 What functions and features are required to solve the problem? 

 Is it possible to create smaller problems that are easier to understand? 

 Can a graphic analysis model be created? 

Plan the Solution 

 Have you seen similar problems before? 

 Has a similar problem been solved? 

 Can readily solvable sub problems be defined? 

 Can a design model be created? 

Carry Out the Plan 

 Does solution conform to the plan? 

 Is each solution component provably correct? 

Examine the Result 

 Is it possible to test each component part of the solution? 

 Does the solution produce results that conform to the data, functions, and features 

required? 

 

 

 

 

 

 

 

 

 

 

 



9 
Software Engineering (R15) 

 

Software Myths 

Software Myths- beliefs about software and the process used to build it - can be traced to 

the earliest days of computing. Myths have a number of attributes that have made them 

insidious. For instance, myths appear to be reasonable statements of fact, they have an 

intuitive feel, and they are often promulgated by experienced practitioners who “know 

the score” 

Management Myths : 

Managers with software responsibility, like managers in most disciplines, are often under 

pressure to maintain budgets, keep schedules from slipping, and improve quality. Like a 

drowning person who grasps at a straw, a software manager often grasps at belief in a software 

myth. 

Myth : We already have a book that’s full of standards and procedures for building software. 

Won’t that provide my people with everything they need to know? 

Reality : 

• The book of standards may very well exist, but is it used? 

• Are software practitioners aware of its existence? 

• Does it reflect modern software engineering practice? 

• Is it complete? 

• Is it adaptable? 

 

• Is it streamlined to improve time to delivery while still maintaining a focus on Quality? 

In many cases, the answer to these entire question is NO. 

Myth : If we get behind schedule, we can add more programmers and catch up 

Reality : Software development is not a mechanistic process like manufacturing. “Adding 

people to a late software project makes it later.” At first, this statement may seem 

counterintuitive. However, as new people are added, people who were working must spend time 

educating the newcomers, thereby reducing the amount of time spent on productive development 

effort 

Myth : If we decide to outsource the software project to a third party, I can just relax and let 

that firm build it. 

Reality : If an organization does not understand how to manage and control software project 

internally, it will invariably struggle when it out sources software project. 



10 
Software Engineering (R15) 

 

Customer Myths 

A customer who requests computer software may be a person at the next desk, a technical 

group down the hall, the marketing /sales department, or an outside company that has requested 

software under contract. In many cases, the customer believes myths about software because 

software managers and practitioners do little to correct misinformation. Myths led to false 

expectations and ultimately, dissatisfaction with the developers. 

Myth : A general statement of objectives is sufficient to begin writing programs - we can fill in 

details later. 

Reality : Although a comprehensive and stable statement of requirements is not always possible, 

an ambiguous statement of objectives is a recipe for disaster. Unambiguous requirements are 

developed only through effective and continuous communication between customer and 

developer. 

Myth : Project requirements continually change, but change can be easily accommodated 

because software is flexible. 

Reality : It’s true that software requirement change, but the impact of change varies with the 

time at which it is introduced. When requirement changes are requested early, cost impact is 

relatively small. However, as time passes, cost impact grows rapidly – resources have been 

committed, a design framework has been established, and change can cause upheaval that 

requires additional resources and major design modification. 



11 
Software Engineering (R15) 

 

Practitioner's myths. 

Myths that are still believed by software practitioners have been fostered by 50 years of 

programming culture. During the early days of software, programming was viewed as an art 

form. Old ways and attitudes die hard. 

Myth: Once we write the program and get it to work, our job is done. 

Reality: Someone once said that "the sooner you begin 'writing code', the longer it'll take you to 

get done.” Industry data indicate that between 60 and 80 percent of all effort expended on 

software will be expended after it is delivered to the customer for the first time. 

Myth: Until I get the program "running" I have no way of assessing its quality. 

Reality: One of the most effective software quality assurance mechanisms can be applied from 

the inception of a project—the formal technical review. Software reviews are a "quality filter" 

that have been found to be more effective than testing for finding certain classes of software 

defects. 

Myth: The only deliverable work product for a successful project is the working program. 

Reality: A working program is only one part of a software configuration that includes many 

elements. Documentation provides a foundation for successful engineering and, more important, 

guidance for software support. 

Myth: Software engineering will make us create voluminous and unnecessary documentation 

and will invariably slow us down. 

Reality: Software engineering is not about creating documents. It is about creating quality. Better 

quality leads to reduced rework. And reduced rework results in faster delivery times. Many 

software professionals recognize the fallacy of the myths just described. Regrettably, habitual 

attitudes and methods foster poor management and technical practices, even when reality dictates 

a better approach. Recognition of software realities is the first step toward formulation of 

practical solutions for software engineering. 


	Software and Software Engineering
	Software Process
	Attributes for Comparing Process Models

	The Software Engineering Practice
	The Essence of Practice
	Understand the Problem
	Plan the Solution
	Carry Out the Plan
	Examine the Result

	Software Myths


