1. In the configuration of the mechanism shown in the figure, points C, A and D are collinear. If the $\mathrm{CA}=3 \mathrm{~cm}, \mathrm{CD}=6 \mathrm{~cm}$ and $\omega_{2}=3 \mathrm{rad} / \mathrm{sCCW}$, find $\omega_{4} \mathrm{in} \mathrm{rad} / \mathrm{s}$.
2. In the following configuration of a rigid body under certain motion, $\mathrm{V}_{\mathrm{A}}=4 \mathrm{~m} / \mathrm{s}$ and $\theta=30^{\circ}$. The direction of velocity at point B is known to be along the line $B C$ which makes an angle $\varphi=45^{0}$ with line $A B$. The magnitude of velocity at B is
3. In the given configuration of a rigid body in motion, the velocities at points A and B are $V_{A}=4 \mathrm{~m} / \mathrm{s}$ and $V_{B}=2 \mathrm{~m} / \mathrm{s}$ with $\theta=45^{\circ}$ and $\varphi=30^{\circ}$, respectively. AC and BC are perpendicular to each other. What is the magnitude of velocity at point C ?

problem -1

problem -2
4. The number of teeth on each of the equal spur gears in mesh are 40 . The teeth have 20° involute profile and the module is 8 mm . If the arc of contact is 1.75 times the circular pitch. Find the addendum
5. A pinion having 30 teeth drives a gear having 80 teeth. The profile of the gears is involute with 20° pressure angle, 12 mm module and 10 mm addendum. Find the length of path of contact, arc of contact and the contact ratio.
6. Two involute gears of 20° pressure angle are in mesh. The number of teeth on pinion is 20 and the gear ratio is 2 . If the pitch expressed in module is 5 mm and the pitch line speed is $1.2 \mathrm{~m} / \mathrm{s}$, assuming addendum as standard and equal to one module, find: (a) The maximum velocity of sliding.

Problem-3

