1. In the configuration of the mechanism shown in the figure, points C, A and D are collinear. If the CA = 3 cm, CD = 6 cm and ω_2 = 3 rad/s CCW, find ω_4 in rad/s.

2. In the following configuration of a rigid body under certain motion, $V_A = 4$ m/s and $\theta = 30^{0}$. The direction of velocity at point B is known to be along the line BC which makes an angle $\varphi = 45^{0}$ with line AB. The magnitude of velocity at B is

3. In the given configuration of a rigid body in motion, the velocities at points A and B are $V_A = 4$ m/s and $V_B = 2$ m/s with $\theta = 45^{\circ}$ and $\phi = 30^{\circ}$, respectively. AC and BC are perpendicular to each other. What is the magnitude of velocity at point C?

problem -1

4. The number of teeth on each of the equal spur gears in mesh are 40. The teeth have 20^0 involute profile and the module is 8 mm. If the arc of contact is 1.75 times the circular pitch. Find the addendum

5. A pinion having 30 teeth drives a gear having 80 teeth. The profile of the gears is involute with 20^{0} pressure angle, 12 mm module and 10 mm addendum. Find the length of path of contact, arc of contact and the contact ratio.

6. Two involute gears of 20° pressure angle are in mesh. The number of teeth on pinion is 20 and the gear ratio is 2. If the pitch expressed in module is 5 mm and the pitch line speed is 1.2 m/s, assuming addendum as standard and equal to one module, find: (a) The maximum velocity of sliding.

Problem-3