Regulation of nitrogenase by combined nitrogen sources

-Dr. Ekta Khare Department of Microbiology Institute of Biosciences & Biotechnology, CSJM University, Kanpur * In general, N₂ fixation is greatly decreased or inhibited completely, when alternative sources of nitrogen are available.

* When added to N_2 fixing organisms, ammonium (NH_4^+) usually inhibits nitrogenase activity markedly whereas nitrate (NO_3^-) and nitrite (NO_2^-) is often less effective in inhibiting N_2 fixation.

Nitrogenase enzyme synthesis is regulated at transcriptional level by presence of other sources of nitrogen.

- Nif genes are the genes encode for nitrogenase enzyme.
- Regulation of nif genes transcription is done by the nitrogen sensitive NifA protein.
- When there isn't enough fixed nitrogen available NtrC protein triggers NifA expression.
- If there is a sufficient amount of reduced nitrogen or oxygen is present, another protein NifL is activated.
- NifL inhibits NifA activity resulting in the inhibition of nitrogenase formation.

Post-translational regulation

- During energy limiting or nitrogen sufficient condition, the nitrogense compex is rapidly, reversibly inactivated by ADP-ribosylation of Fe protein.
- It occurs at a specific arginine residue, i.e. Arg₁₀₁.
- The presence of ADP ribose group prevents association of Fe protein with Mo-Fe protein.
- Thus it results in regulating the nitrogen fixation.

Effect of ammonia or ammonium salts

- Ammonia or ammonium salts can inhibit nitrogenase activity:
- by interfering with the supply of reductant to nitrogenase.
- through covalent modification of the Fe-protein of nitrogenase.
- a more general effect of NH₄⁺ on N₂ fixation is exerted through inhibition of nitrogenase synthesis. The true inhibitor is either NH₄⁺ itself or an assimilatory product derived from NH₄⁺.

Effect of nitrate and nitrite

Nitrate (NO₃-)

- The reduction of nitrate by the enzyme nitrate reductase produces nitrite.
- Subsequently nitrite is converted to NH₄⁺ by the enzyme nitrite reductase.
- If nitrates are present in plentiful amount, diazotrophs prefer the second pathway for the synthesis of amino acids.
- In through this way NO_3^- inhibits nitrogenase synthesis.

Nitrite (NO₂⁻)

In Anabaena variabilis, for example, nitrite (NO₂⁻) inactivated nitrogenase directly, whereas in Azotobacter chroococcum, inhibition of N₂ fixation by NO₂⁻ was indirect, caused by one or more assimilatory product(s) of NH₄⁺ which, in turn, arose as a result of the action of nitrite reductase on NO₂⁻.

Questions

- Explain regulation of nitrogenase by combined nitrogen sources.
- Explain how availability of ammonium salts, nitrate and nitrites regulates nitrogenase enzyme activity?