

Capital Budgeting: the process of planning for purchases of longterm assets.

- example:

Suppose our firm must decide whether to purchase a new plastic molding machine for $\$ 125,000$. How do we decide?
\square Will the machine be profitable?
\square Will our firm earn a high rate of return on the investment?

Decision-making Criteria in Capital Budgeting

How do we decide

 if a capital investment project should be accepted or rejected?
Decision-making Criteria in Capital Budgeting

\square The Ideal Evaluation Method should:
a) include all cash flows that occur during the life of the project,
b) consider the time value of money,
c) incorporate the required rate of return on the project.

Payback Period

\square How long will it take for the project to generate enough cash to pay for itself?

Payback Period

\square How long will it take for the project to generate enough cash to pay for itself?
(500) 150150150150150150150

Payback Period

\square How long will it take for the project to generate enough cash to pay for itself?
(500) $1 \begin{array}{lllllllll}150 & 150 & 150 & 150 & 150 & 150 & 150 & 150\end{array}$

Payback period $=3.33$ years.

Payback Period

- Is a 3.33 year payback period good?
\square Is it acceptable?
- Firms that use this method will compare the payback calculation to some standard set by the firm.
- If our senior management had set a cutoff of 5 years for projects like ours, what would be our decision?
\square Accept the project.

Drawbacks of Payback Period

\square Firm cutoffs are subjective.

- Does not consider time value of money.
\square Does not consider any required rate of return.
\square Does not consider all of the project's cash flows.

Drawbacks of Payback Period

- Does not consider all of the project's cash flows.
$\begin{array}{ccccccccc}(500) & 150 & 150 & 150 & 150 & 150 & (300) & 0 & 0 \\ \mid & \mid & \mid & 1 & 1 & \mid & \mid & \mid & 1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
\square Consider this cash flow stream!

Drawbacks of Payback Period

\square Does not consider all of the project's cash flows.
(500) $150150 \quad 150 \quad 150 \quad 150$ (300) 0

\square This project is clearly unprofitable, but we would accept it based on a 4year payback criterion!

Other Methods

1) Net Present Value (NPV)
2) Profitability Index (PI)
3) Internal Rate of Return (IRR)

Each of these decision-making criteria:

- Examines all net cash flows,
\square Considers the time value of money, and
\square Considers the required rate of return.

Net Present Value

- NPV = the total PV of the annual net cash flows - the initial outlay.

$$
\mathrm{NPV}=\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\mathrm{ACF} \mathrm{t}}{(1+\mathrm{k})^{\mathrm{t}}}-\mathrm{IO}
$$

Net Present Value

- Decision Rule:

- If NPV is positive, accept. - If NPV is negative, reject.

NPV Example

\square Suppose we are considering a capital investment that costs $\$ 250,000$ and provides annual net cash flows of $\$ 100,000$ for five years. The firm's required rate of return is 15%.

NPV Example

\square Suppose we are considering a capital investment that costs $\$ 250,000$ and provides annual net cash flows of $\$ 100,000$ for five years. The firm's required rate of return is 15%.
$250,000 \quad 100,000 \quad 100,000 \quad 100,000 \quad 100,000 \quad 100,000$

NPV is just the PV of the annual cash flows minus the initial outflow.

Using TVM:

$$
\begin{aligned}
& \mathrm{P} / \mathrm{Y}=1 \quad \mathrm{~N}=5 \quad \mathrm{I}=15 \\
& \mathrm{PMT}=100,000
\end{aligned}
$$

PV of cash flows $=\$ 335,216$

- Initial outflow: $\underline{(\$ 250,000)}$
$=$ Net PV $\$ 85,216$

Profitability Index

Profitability Index

$$
\sum_{t=1}^{n}
$$

Profitability Index

$$
\mathrm{NPV}=\sum_{t=1}^{\mathrm{n}} \frac{\mathrm{ACFt}^{\mathrm{t}}}{(1+\mathrm{k})^{\mathrm{t}}}-10
$$

$$
P I=\sum_{t=1}^{n} \frac{A C F ' t}{(1+k)^{t}} / 10
$$

Profitability Index

- Decision Rule:

- If PI is greater than or equal to 1 , accept.
- If PI is less than 1 , reject.

Internal Rate of Return (IRR)

$\square \underline{\text { IRR: }}$ the return on the firm's invested capital. IRR is simply the rate of return that the firm earns on its capital budgeting projects.

Internal Rate of Return (IRR)

Internal Rate of Return (IRR)

$$
\mathrm{NPV}=\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\mathrm{ACFt}}{(1+\mathrm{k})^{\mathrm{t}}}-10
$$

Internal Rate of Return (IRR)

$$
\mathrm{NPV}=\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\mathrm{ACFt}}{(1+\mathrm{k})^{\mathrm{t}}}-10
$$

$$
\text { IRR: } \sum_{t=1}^{n} \frac{A C F t}{(1+I R R)^{t}}=I 0
$$

Internal Rate of Return (IRR)

n
 IRR:
 ACF^{\prime} $(1+I R R) t=10$

\square IRR is the rate of return that makes the PV of the cash flows equal to the initial outlay.
\square This looks very similar to our Yield to Maturity formula for bonds. In fact, YTM is the IRR of a bond.

Calculating IRR

\square Looking again at our problem: \square The IRR is the discount rate that makes the PV of the projected cash flows equal to the initial outlay.
$250,000 \quad 100,000 \quad 100,000 \quad 100,000 \quad 100,000 \quad 100,000$

IRR

- Decision Rule:

- If IRR is greater than or equal to the required rate of return, accept.
- If IRR is less than the required rate of return, reject.
\square IRR is a good decision-making tool as long as cash flows are conventional. (- + + + + +)
\square Problem: If there are multiple sign changes in the cash flow stream, we could get multiple IRRs. (-++-++)
\square IRR is a good decision-making tool as long as cash flows are conventional. (+++++)
\square Problem: If there are multiple sign changes in the cash flow stream, we could get multiple IRRs. (-++-++)

(500) $200 \quad 100 \quad$ (200) $\quad 400 \quad 300$

\square IRR is a good decision-making tool as long as cash flows are conventional. (- + + + + +)
\square Problem: If there are multiple sign changes in the cash flow stream, we could get multiple IRRs. (++-++)

\square IRR is a good decision-making tool as long as cash flows are conventional. (+++++)
\square Problem: If there are multiple sign changes in the cash flow stream, we could get multiple IRRs. $(-++-++$)

\square IRR is a good decision-making tool as long as cash flows are conventional. (+++++)
\square Problem: If there are multiple sign changes in the cash flow stream, we could get multiple IRRs. $(-++-++$)

Summary Problem

\square Enter the cash flows only once.
\square Find the IRR.
\square Using a discount rate of 15%, find NPV. \square Add back IO and divide by IO to get PI.

(900) 300
 400
 400
 500
 600
 1 0
 1
 2
 3
 5

Summary Problem

- IRR = 34.37\%
- Using a discount rate of 15\%,
$\mathrm{NPV}=\$ 510.52$.
$\square \mathrm{PI}=1.57$.

$\begin{array}{llllll}900) & 300 & 400 & 400 & 500 & 600\end{array}$

Capital Rationing

\square Suppose that you have evaluated 5 capital investment projects for your company.
\square Suppose that the VP of Finance has given you a limited capital budget.
\square How do you decide which projects to select?

Capital Rationing

\square You could rank the projects by IRR:

Capital Rationing

\square You could rank the projects by IRR:
IRR

Capital Rationing

\square You could rank the projects by IRR:
IRR

Capital Rationing

\square You could rank the projects by IRR:
IRR

Capital Rationing

\square You could rank the projects by IRR:
IRR

Capital Rationing

\square You could rank the projects by IRR:
IRR

Capital Rationing

\square You could rank the projects by IRR:
IRR

\$X

Capital Rationing

\square You could rank the projects by IRR:
IRR $25 \%-\square$ Our budget is limited so we accept only projects 1, 2, and 3 .
\$X

Problems with Project Ranking

1) Mutually exclusive projects of unequal size (the size disparity problem)
\square The NPV decision may not agree with IRR or PI.
\square Solution: select the project with the largest NPV.

Size Disparity example

Project A

IRR = 15.89\%
NPV $=\$ 9,110$
$\mathrm{PI}=1.07$

Size Disparity example

Project A year	
0	$(135,000)$
1	60,000
2	60,000
3	60,000
required return $=12 \%$	

IRR = 15.89\%
NPV $=\mathbf{\$ 9 , 1 1 0}$
$\mathrm{PI}=1.07$

Project B
year
cash flow
$(30,000)$
15,000
15,000
15,000
required return $=12 \%$
IRR = 23.38\%
NPV $=\$ 6,027$
$\mathrm{PI}=1.20$

Size Disparity example

Project A year	
0	$(135,000)$
1	60,000
2	60,000
3	60,000
required return $=12 \%$	

IRR = 15.89\%
NPV = \$9,110
$\mathrm{PI}=1.07$

Project B
year
cash flow
$(30,000)$
15,000
15,000
15,000
required return $=12 \%$
$\underline{\underline{I R R}=23.38 \%}$
NPV $=\$ 6,027$
$\mathrm{PI}=1.20$

Problems with Project Ranking

2) The time disparity problem with mutually exclusive projects.
\square NPV and PI assume cash flows are reinvested at the required rate of return for the project.
\square IRR assumes cash flows are reinvested at the IRR.

- The NPV or PI decision may not agree with the IRR.
\square Solution: select the largest NPV.

Time Disparity example

Project A cash flow	
$\mathbf{y e a r}$	$(\mathbf{4 8 , 0 0 0})$
1	1,200
2	2,400
3	39,000
4	42,000
required return $=12 \%$	
IRR $=18.10 \%$	
$\mathrm{NPV}=\$ 9,436$	
$\mathrm{PI}=1.20$	

Time Disparity example

Project A year	
0	$(48,000)$
1	1,200
2	2,400
3	39,000
4	42,000
required return $=12 \%$	

IRR $=18.10 \%$
$\mathrm{NPV}=\$ 9,436$
$\mathrm{PI}=1.20$

Project B
year cash flow
$(46,500)$
36,500
24,000
2,400
4
2,400
required return $=12 \%$
IRR $=\mathbf{2 5 . 5 1} \%$
NPV = \$8,455
$\mathrm{PI}=1.18$

Time Disparity example

Project A year	
0	$(48,000)$
1	1,200
2	2,400
3	39,000
4	42,000
required return $=12 \%$	

[^0]$\mathrm{PI}=1.18$
Project B
year cash flow $(46,500)$ 36,500 24,000
2,400
2,400
required return $=12 \%$
IRR = 25.51\%
NPV = \$8,455

Mutually Exclusive Investments with Unequal Lives

\square Suppose our firm is planning to expand and we have to select 1 of 2 machines.
\square They differ in terms of economic life and capacity.
\square How do we decide which machine to select?

- The after-tax cash flows are:

Year
0
Machine 1
$(45,000)$
20,000
Machine 2
$(45,000)$
12,000
12,000
12,000
12,000
12,000
12,000
\square Assume a required return of 14\%.

Step 1: Calculate NPV

\square NPV1 $=\$ 1,433$
$\square \mathrm{NPV}_{2}=\$ 1,664$
\square So, does this mean \#2 is better?
\square No! The two NPVs can't be compared!

Step 2: Equivalent Annual Annuity (EAA) method

\square If we assume that each project will be replaced an infinite number of times in the future, we can convert each NPV to an annuity.

- The projects' EAAs can be compared to determine which is the best project!
- EAA: Simply annualize the NPV over the project's life.
- EAA1 $=\$ 617$
- EAA2 $=\$ 428$
\square This tells us that:
\square NPV1 = annuity of $\$ 617$ per year.
\square NPV2 $=$ annuity of $\$ 428$ per year.
\square So, we've reduced a problem with different time horizons to a couple of annuities.
\square Decision Rule: Select the highest EAA. We would choose machine \#1.

Step 3: Convert back to NPV_{∞}

Step 3: Convert back to NPV ${ }_{\infty}$

\square Assuming infinite replacement, the EAAs are actually perpetuities. Get the PV by dividing the EAA by the required rate of return.

Step 3: Convert back to NPV ${ }_{\infty}$

\square Assuming infinite replacement, the EAAs are actually perpetuities. Get the PV by dividing the EAA by the required rate of return.
$\square \mathrm{NPV}_{\infty 1}=617 / .14=\$ 4,407$

Step 3: Convert back to NPV ${ }_{\infty}$

\square Assuming infinite replacement, the EAAs are actually perpetuities. Get the PV by dividing the EAA by the required rate of return.
$\square \mathrm{NPV}_{\infty 1}=617 / .14=\$ 4,407$
$\square \mathrm{NPV}_{\mathrm{CO} 2}=428 / .14=\$ 3,057$

Step 3: Convert back to NPV ${ }_{\infty}$

\square Assuming infinite replacement, the EAAs are actually perpetuities. Get the PV by dividing the EAA by the required rate of return.
$\square \mathrm{NPV}_{\infty 1}=617 / .14=\$ 4,407$
$\square \mathrm{NPV}_{\mathrm{OO} 2}=428 / .14=\$ 3,057$
\square This doesn't change the answer, of course; it just converts EAA to a NPV that can be compared.

[^0]: IRR $=18.10 \%$
 $\mathrm{NPV}=\$ 9,436$
 $\mathrm{PI}=1.20$

