Objective:

- How to calculate principal stress at a point P ?
- At any point P there is always three principal planes at which shear stress are zero.
- Eigen value of stress matrix.

State of stress at a point:
$\sigma=\left[\begin{array}{lll}\sigma_{x x} & \tau_{x y} & \tau_{x z} \\ \tau_{y x} & \sigma_{y y} & \tau_{y z} \\ \tau_{z x} & \tau_{z y} & \sigma_{z z}\end{array}\right]$
Step to calculate Eigen value of square matrix.
$[\mathrm{A}]-\lambda[I]$
$\left[\begin{array}{ccc}\sigma_{x x}-\lambda & \tau_{x y} & \tau_{x z} \\ \tau_{y x} & \sigma_{y y}-\lambda & \tau_{y z} \\ \tau_{z x} & \tau_{z y} & \sigma_{z z}-\lambda\end{array}\right]$
$\operatorname{Det}([\mathrm{A}]-\lambda[\mathrm{I}])=0$
$\left|\begin{array}{ccc}\sigma_{x x}-\lambda & \tau_{x y} & \tau_{x z} \\ \tau_{y x} & \sigma_{y y}-\lambda & \tau_{y z} \\ \tau_{z x} & \tau_{z y} & \sigma_{z z}-\lambda\end{array}\right|=0$
$a \lambda^{3}+b \lambda^{2}+c \lambda+\mathrm{d}=0$
After solving this equation you will get three values of lamda which corresponds to principal stresses at that point.

