Processes

Process Concept

- An operating system executes a variety of programs:
 - Batch system jobs
 - Time-shared systems user programs or tasks
- Textbook uses the terms *job* and *process* almost interchangeably
- Process a program in execution; process execution must progress in sequential fashion
- Multiple parts
 - The program code, also called text section
 - Current activity including program counter, processor registers
 - Stack containing temporary data
 - Function parameters, return addresses, local variables
 - **Data section** containing global variables
 - Heap containing memory dynamically allocated during run time

Process Concept (Cont.)

- Program is *passive* entity stored on disk (executable file), process is active
 - Program becomes process when executable file loaded into memory
- Execution of program started via GUI mouse clicks, command line entry of its name, etc.
- One program can be several processes
 - Consider multiple users executing the same program

Process in Memory

Process State

- As a process executes, it changes state
 - **new**: The process is being created
 - running: Instructions are being executed
 - waiting: The process is waiting for some event to occur
 - ready: The process is waiting to be assigned to a processor
 - terminated: The process has finished execution

Diagram of Process State

Process Control Block (PCB)

Information associated with each process (also called task control block)

- Process state running, waiting, etc.
- Program counter location of instruction to next execute
- CPU registers contents of all process-centric registers
- CPU scheduling information- priorities, scheduling queue pointers
- Memory-management information memory allocated to the process
- Accounting information CPU used, clock time elapsed since start, time limits
- I/O status information I/O devices allocated to process, list of open files

process state
process number
program counter
registers
memory limits
list of open files
• • •

System Calls

- System calls are used to provide an interface between the operating system and the user programs(processes).
- The set of system calls is vary from operating system to operating system.
- A process(i.e. a program in execution) can run in two modes user mode and kernel mode (or operating system mode).

Types of System Calls

- Process control
 - create process, terminate process
 - end, abort
 - load, execute
 - get process attributes, set process attributes
 - wait for time
 - wait event, signal event
 - allocate and free memory
 - Dump memory if error
 - **Debugger** for determining **bugs**, **single step** execution
 - Locks for managing access to shared data between processes

Types of System Calls (Cont.)

• File management

- create file, delete file
- open, close file
- read, write, reposition
- get and set file attributes
- Device management
 - request device, release device
 - read, write, reposition
 - get device attributes, set device attributes
 - logically attach or detach devices

Types of System Calls (Cont.)

- Information maintenance
 - get time or date, set time or date
 - get system data, set system data
 - get and set process, file, or device attributes
- Communications
 - create, delete communication connection
 - send, receive messages if message passing model to host name or process name
 - From client to server
 - Shared-memory model create and gain access to memory regions
 - transfer status information
 - attach and detach remote devices

Types of System Calls (Cont.)

Protection

- Control access to resources
- Get and set permissions
- Allow and deny user access

• User goals and System goals

- User goals operating system should be convenient to use, easy to learn, reliable, safe, and fast
- System goals operating system should be easy to design, implement, and maintain, as well as flexible, reliable, error-free, and efficient