
Process Synchronization



Process Synchronization

• On the basis of synchronization, processes are categorized as one of 
the following two types:

• Independent Process : Execution of one process does not affects the 
execution of other processes.

• Cooperative Process : Execution of one process affects the execution 
of other processes.

• Process synchronization problem arises in the case of Cooperative 
process also because resources are shared in Cooperative processes.



Process Synchronization

• Processes can execute concurrently
• May be interrupted at any time, partially completing execution

• Concurrent access to shared data may result in data inconsistency

• Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating processes

• Illustration of the problem:
Suppose that we wanted to provide a solution to the consumer-
producer problem that fills all the buffers. We can do so by having an 
integer counter that keeps track of the number of full buffers.  
Initially, counter is set to 0. It is incremented by the producer after it 
produces a new buffer and is decremented by the consumer after it 
consumes a buffer.



Race Condition

• When more than one processes are executing the same code or accessing 
the same memory or any shared variable in that condition there is a 
possibility that the output or the value of the shared variable is wrong so 
for that all the processes doing the race to say that my output is correct 
this condition known as a race condition. 

• A race condition is a situation that may occur inside a critical section. This 
happens when the result of multiple thread execution in the critical section 
differs according to the order in which the threads execute.

• Race conditions in critical sections can be avoided if the critical section is 
treated as an atomic instruction. Also, proper thread synchronization using 
locks or atomic variables can prevent race conditions.



Critical Section Problem

• Critical Consider system of n processes {p0, p1, … pn-1}

• Each process has critical section segment of code
• Process may be changing common variables, updating table, writing file, etc

• When one process in critical section, no other may be in its critical section

• Critical section problem is to design protocol to solve this

• Each process must ask permission to enter critical section in entry 
section, may follow critical section with exit section, then remainder 
section

• Section Problem



Critical Section
• General structure of process Pi  



Solution to Critical-Section Problem

Mutual Exclusion - If process Pi is executing in its critical section, then 
no other processes can be executing in their critical sections

2.   Progress - If no process is executing in its critical section and there 
exist some processes that wish to enter their critical section, then the 
selection of the processes that will enter the critical section next 
cannot be postponed indefinitely

3.  Bounded Waiting - A bound must exist on the number of times that 
other processes are allowed to enter their critical sections after a 
process has made a request to enter its critical section and before 
that request is granted



Peterson’s Solution

• Good algorithmic  description of solving the problem

• Two process solution

• Assume that the load and store machine-language instructions are 
atomic; that is, cannot be interrupted

• The two processes share two variables:
• int turn; 

• Boolean flag[2]

• The variable turn indicates whose turn it is to enter the critical section

• The flag array is used to indicate if a process is ready to enter the 
critical section. flag[i] = true implies that process Pi is ready!



Peterson’s Solution

• Peterson’s Solution is a classical software 

based solution to the critical section problem.

• In Peterson’s solution, we have two 

shared variables:

(a) Boolean flag[i] :Initialized to FALSE, 

initially no one is interested in entering the 

critical section

(b) int turn : The process whose turn is to 

enter the critical section.

https://www.geeksforgeeks.org/wp-content/uploads/gq/2015/06/peterson.png


Peterson’s Solution

• Peterson’s Solution preserves all three conditions :

• Mutual Exclusion is assured as only one process can access the critical 
section at any time.

• Progress is also assured, as a process outside the critical section does 
not block other processes from entering the critical section.

• Bounded Waiting is preserved as every process gets a fair chance.
Disadvantages of Peterson’s Solution

• It involves Busy waiting

• It is limited to 2 processes.



Synchronization Hardware
• Many systems provide hardware support for implementing the critical 

section code.

• All solutions below based on idea of locking
• Protecting critical regions via locks

• Uniprocessors – could disable interrupts
• Currently running code would execute without preemption
• Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware instructions
• Atomic = non-interruptible

• Either test memory word and set value
• Or swap contents of two memory words



Solution to Critical-section Problem Using 
Locks
do { 

acquire lock 

critical section 

release lock 

remainder section 

} while (TRUE); 



TestAndSet
• TestAndSet is a hardware solution to the synchronization problem. 

• In TestAndSet, we have a shared lock variable which can take either of the two values, 0 or 1.

• 0 Unlock 1 Lock .

• Before entering into the critical section, a process inquires about the lock. If it is locked, it keeps 
on waiting until it becomes free and if it is not locked, it takes the lock and executes the critical 
section.

Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically

2. Returns the original value of passed parameter

3. Set the new value of passed parameter to “TRUE

In TestAndSet, Mutual exclusion and progress are preserved but bounded waiting cannot be 
preserved.



Classical Problems of Synchronization

• Classical problems used to test newly-proposed synchronization 
schemes

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

• Bounded buffer problem, which is also called producer consumer 
problem, is one of the classic problems of synchronization



Producer-Consumer problem

• i) Shared Memory Method
Ex: Producer-Consumer problem
• There are two processes: Producer and Consumer. 
• The producer produces some items and the Consumer consumes that item. 
• The two processes share a common space or memory location known as a 

buffer where the item produced by the Producer is stored and from which 
the Consumer consumes the item if needed. 

• There are two versions of this problem: the first one is known as the 
unbounded buffer problem in which the Producer can keep on producing 
items and there is no limit on the size of the buffer, the second one is 
known as the bounded buffer problem in which the Producer can produce 
up to a certain number of items before it starts waiting for Consumer to 
consume it. 



bounded buffer problem

• First, the Producer and the Consumer will share some common 
memory, then the producer will start producing items. 

• If the total produced item is equal to the size of the buffer, the 
producer will wait to get it consumed by the Consumer. 

• Similarly, the consumer will first check for the availability of the item. 

• If no item is available, the Consumer will wait for the Producer to 
produce it. 

• If there are items available, Consumer will consume them. 



Bounded Buffer Problem
There is a buffer of n slots and each slot is capable of 

storing one unit of data. 
There are two processes running, 
namely, producer and consumer, which are operating on the 

buffer.



• A producer tries to insert data into an empty slot of 
the buffer. 

• A consumer tries to remove data from a filled slot in 
the buffer.

• So, those two processes won't produce the expected 
output if they are being executed concurrently.

• There needs to be a way to make the producer and 
consumer work in an independent manner.



• One solution of this problem is to use semaphores. 

• m, a binary semaphore which is used to acquire and release the lock.

• empty, a counting semaphore whose initial value is the number of 
slots in the buffer, since, initially all slots are empty.

• full, a counting semaphore whose initial value is 0.

• At any instant, the current value of empty represents the number of 
empty slots in the buffer and full represents the number of occupied 
slots in the buffer.



The Producer Operation

• The structure of the producer process

do { 

...
/* produce an item in next_produced */ 

... 

wait(empty); 

wait(mutex); 

...
/* add next produced to the buffer */ 

... 

signal(mutex); 

signal(full); 

} while (true);



The Producer Operation

• Looking at the above code for a producer, we can see that a producer 
first waits until there is at least one empty slot.

• Then it decrements the empty semaphore because, there will now be 
one less empty slot, since the producer is going to insert data in one 
of those slots.

• Then, it acquires lock on the buffer, so that the consumer cannot 
access the buffer until producer completes its operation.

• After performing the insert operation, the lock is released and the 
value of full is incremented because the producer has just filled a slot 
in the buffer.



The Consumer Operation
n The structure of the consumer process

Do { 

wait(full); 

wait(mutex); 

...
/* remove an item from buffer to next_consumed */ 

... 

signal(mutex); 

signal(empty); 

...
/* consume the item in next consumed */ 

...
} while (true); 



The Consumer Operation
• The consumer waits until there is at least one full slot in the buffer.

• Then it decrements the full semaphore because the number of 
occupied slots will be decreased by one, after the consumer 
completes its operation.

• After that, the consumer acquires lock on the buffer.

• Following that, the consumer completes the removal operation so 
that the data from one of the full slots is removed.

• Then, the consumer releases the lock.

• Finally, the empty semaphore is incremented by 1, because the 
consumer has just removed data from an occupied slot, thus making 
it empty.



Readers-Writers Problem
• A data set is shared among a number of concurrent processes

• Readers – only read the data set; they do not perform any updates
• Writers   – can both read and write

• Problem – allow multiple readers to read at the same time
• Only one single writer can access the shared data at the same time

• Several variations of how readers and writers are considered  – all involve 
some form of priorities

• Shared Data
• Data set
• Semaphore rw_mutex initialized to 1
• Semaphore mutex initialized to 1
• Integer read_count initialized to 0



Readers-Writers Problem
• There is a shared resource which should be accessed by multiple processes. 

• There are two types of processes in this context. 

• They are reader and writer. 

• Any number of readers can read from the shared resource simultaneously, 

• but only one writer can write to the shared resource. 

• When a writer is writing data to the resource, no other process can access 
the resource. 

• A writer cannot write to the resource if there are non zero number of 
readers accessing the resource at that time.



Readers-Writers Problem
• From the above problem statement, the readers that have higher 

priority than writer.

• If a writer wants to write to the resource, it must wait until there are 
no readers currently accessing that resource.

• Here, we use one mutex m and a semaphore w.

• An integer variable read_count is used to maintain the number of readers 
currently accessing the resource.

• The variable read_count is initialized to 0.

• A value of 1 is given initially to m and w.



Readers-Writers Problem

• The structure of a writer process

do {

wait(rw_mutex); 

...

/* writing is performed */ 

... 

signal(rw_mutex); 

} while (true);



Readers-Writers Problem
• The structure of a reader process

do {
wait(mutex);
read_count++;
if (read_count == 1) 

wait(rw_mutex); 

signal(mutex); 

...
/* reading is performed */ 

... 

wait(mutex);
read count--;
if (read_count == 0) 

signal(rw_mutex); 

signal(mutex); 

} while (true);



Readers-Writers Problem

• As seen above in the code for the writer, the writer just waits on
the w semaphore until it gets a chance to write to the resource.

• After performing the write operation, it increments w so that the next writer can
access the resource.

• On the other hand, in the code for the reader, the lock is acquired whenever
the read_count is updated by a process.

• When a reader wants to access the resource, first it increments
the read_count value, then accesses the resource and then decrements
the read_count value.

• The semaphore w is used by the first reader which enters the critical section and
the last reader which exits the critical section.

• The reason for this is, when the first readers enters the critical section, the writer
is blocked from the resource. Only new readers can access the resource now.

• Similarly, when the last reader exits the critical section, it signals the writer using
the w semaphore because there are zero readers now and a writer can have the
chance to access the resource.



This problem is used to evaluate situations where there is a need of 
allocating multiple resources to multiple processes.

Dining Philosophers Problem

• Philosophers spend their lives alternating thinking and 
eating

• Don’t interact with their neighbors, occasionally try to pick 
up 2 chopsticks (one at a time) to eat from bowl

• Need both to eat, then release both when done
• In the case of 5 philosophers

• Shared data 
• Bowl of rice (data set)
• Semaphore chopstick [5] initialized to 1



• The structure of Philosopher i:
do { 

wait (chopstick[i] );

wait (chopStick[ (i + 1) % 5] );

//  eat

signal (chopstick[i] );

signal (chopstick[ (i + 1) % 5] );

//  think

} while (TRUE);

Dining Philosophers Problem



• From the problem statement, it is clear that a philosopher can think for an indefinite amount of
time.

• But when a philosopher starts eating, he has to stop at some point of time. The philosopher is in an
endless cycle of thinking and eating.

• An array of five semaphores, stick[5], for each of the five chopsticks.

• When a philosopher wants to eat the rice, he will wait for the chopstick at his left and picks up that
chopstick. Then he waits for the right chopstick to be available, and then picks it too. After eating,
he puts both the chopsticks down.

• But if all five philosophers are hungry simultaneously, and each of them pickup one chopstick, then
a deadlock situation occurs because they will be waiting for another chopstick forever. The
possible solutions for this are:

• A philosopher must be allowed to pick up the chopsticks only if both the left and right chopsticks
are available.

• Allow only four philosophers to sit at the table. That way, if all the four philosophers pick up four
chopsticks, there will be one chopstick left on the table. So, one philosopher can start eating and
eventually, two chopsticks will be available. In this way, deadlocks can be avoided.

Dining Philosophers Problem



References

• www.csee.wvu.edu/~jdmooney/classes/cs550/notes/tech/mutex/Pet
erson.html

• Operating System Concepts by Galvin et al.

• Lecture notes/ppt of Ariel J. Frank, Bar-Ilan University


