
Transactions 



Transaction Concept
• A transaction is a unit of program execution that 

accesses and  possibly updates various data 
items.

• E.g., transaction to transfer $50 from account A 
to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

• Two main issues to deal with:
• Failures of various kinds, such as hardware failures and 

system crashes
• Concurrent execution of multiple transactions



Required  Properties of a Transaction
• Consider a transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

• Atomicity requirement

• If the transaction fails after step 3 and before step 6, money will be “lost” 
leading to an inconsistent database state

• Failure could be due to software or hardware

• The system should ensure that updates of a partially executed transaction are 
not reflected in the database

• Durability requirement — once the user has been notified that the transaction has 
completed (i.e., the transfer of the $50 has taken place), the updates to the 
database by the transaction must persist even if there are software or hardware 
failures.



Required Properties of a Transaction (Cont.)

• Consistency requirement in above example:
• The sum of A and B is unchanged by the execution of the transaction

• In general, consistency requirements include 

• Explicitly specified integrity constraints such as primary keys and 
foreign keys

• Implicit integrity constraints

• e.g., sum of balances of all accounts, minus sum of loan amounts 
must equal value of cash-in-hand

• A transaction, when starting to execute,  must see a consistent database.

• During transaction execution the database may be temporarily inconsistent.

• When the transaction completes successfully the database must be consistent

• Erroneous transaction logic can lead to inconsistency



Required Properties of a Transaction (Cont.)
• Isolation requirement — if between steps 3 and 6 (of the fund transfer 

transaction) , another transaction T2 is allowed to access the partially updated 
database, it will see an inconsistent database (the sum  A + B will be less than it 
should be).

T1                                        T2

1. read(A)

2. A := A – 50

3. write(A)
read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B

• Isolation can be ensured trivially by running transactions serially

• That is, one after the other.   

• However, executing multiple transactions concurrently has significant benefits, as 
we will see later.



ACID Properties

• Atomicity. Either all operations of the transaction are 
properly reflected in the database or none are.

• Consistency. Execution of a transaction in isolation 
preserves the consistency of the database.

• Isolation. Although multiple transactions may execute 
concurrently, each transaction must be unaware of 
other concurrently executing transactions.  
Intermediate transaction results must be hidden from 
other concurrently executed transactions.  

• That is, for every pair of transactions Ti and Tj, it appears to Ti
that either Tj, finished execution before Ti started, or Tj
started execution after Ti finished.

• Durability.  After a transaction completes successfully, 
the changes it has made to the database persist, even if 
there are system failures. 

A  transaction is a unit of program execution that accesses and possibly 

updates various data items. To preserve the integrity of data the database 

system must ensure:



Transaction State
• Active – the initial state; the transaction stays in this 

state while it is executing

• Partially committed – after the final statement has 
been executed.

• Failed -- after the discovery that normal execution 
can no longer proceed.

• Aborted – after the transaction has been rolled back 
and the database restored to its state prior to the 
start of the transaction.  Two options after it has 
been aborted:

• Restart the transaction
• can be done only if no internal logical error

• Kill the transaction

• Committed – after successful completion.



Transaction State (Cont.)



Concurrent Executions
• Multiple transactions are allowed to run 

concurrently in the system.  Advantages are:
• Increased processor and disk utilization, leading to 

better transaction throughput
• E.g. one transaction can be using the CPU while another 

is reading from or writing to the disk

• Reduced average response time for transactions: 
short transactions need not wait behind long ones.

• Concurrency control schemes – mechanisms  to 
achieve isolation

• That is, to control the interaction among the 
concurrent transactions in order to prevent them 
from destroying the consistency of the database

• Will study in Chapter 15, after studying notion of 
correctness of concurrent executions.



Schedules
• Schedule – a sequences of instructions that specify 

the chronological order in which instructions of 
concurrent transactions are executed

• A schedule for a set of transactions must consist of all 
instructions of those transactions

• Must preserve the order in which the instructions 
appear in each individual transaction.

• A transaction that successfully completes its 
execution will have a commit instructions as the 
last statement 

• By default transaction assumed to execute commit 
instruction as its last step

• A transaction that fails to successfully complete its 
execution will have an abort instruction as the last 
statement 



Schedule 1
• Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B.

• An example of a  serial schedule in which T1 is followed by T2 :



Schedule 2
• A serial schedule in which T2 is followed by T1 :



Schedule 3
• Let T1 and T2 be the transactions defined previously. The following schedule 

is not a serial schedule, but it is equivalent to Schedule 1.

Note -- In schedules 1, 2 and 3, the sum “A + B” is preserved.



Schedule 4
• The following concurrent schedule does not preserve the sum  of  “A 

+ B”



Serializability
• Basic Assumption – Each transaction 

preserves database consistency.

• Thus, serial execution of a set of transactions 
preserves database consistency.

• A (possibly concurrent) schedule is 
serializable if it is equivalent to a serial 
schedule.  Different forms of schedule 
equivalence give rise to the notions of:

1. conflict serializability

2. view serializability



Simplified view of transactions
• We ignore operations other than read and 

write instructions

• We assume that transactions may perform 
arbitrary computations on data in local 
buffers in between reads and writes.  

• Our simplified schedules consist of only 
read and write instructions.



Conflicting Instructions 
• Let li and lj be two Instructions of transactions Ti

and Tj respectively.  Instructions li and lj conflict if 
and only if there exists some item Q accessed by 
both li and lj, and at least one of these instructions 
wrote Q.

1. li = read(Q), lj = read(Q).   li and lj don’t 
conflict.

2. li = read(Q),  lj = write(Q).  They conflict.
3. li = write(Q), lj = read(Q).   They conflict
4. li = write(Q), lj = write(Q).  They conflict

• Intuitively, a conflict between li and lj forces a 
(logical) temporal order between them.  

• If li and lj are consecutive in a schedule and they do not 
conflict, their results would remain the same even if 
they had been interchanged in the schedule.



Conflict Serializability
• If a schedule S can be transformed into a 

schedule S´ by a series of swaps of non-
conflicting instructions, we say that S
and S´ are conflict equivalent.

• We say that a schedule S is conflict 
serializable if it is conflict equivalent to a 
serial schedule



Conflict Serializability (Cont.)
• Schedule 3 can be transformed into Schedule 6 -- a serial schedule where T2

follows T1, by a series of swaps of non-conflicting instructions.  Therefore, 
Schedule 3 is conflict serializable.

Schedule 3 Schedule 6



Conflict Serializability (Cont.)
• Example of a schedule that is not conflict 

serializable:

• We are unable to swap instructions in the above 
schedule to obtain either the serial schedule < 
T3, T4 >, or the serial schedule < T4, T3 >.



Precedence Graph
• Consider some schedule of a set of transactions T1, 

T2, ..., Tn

• Precedence graph — a direct graph where the 
vertices are the transactions (names).

• We draw an arc from Ti to Tj if the two transaction 
conflict, and Ti accessed the data item on which the 
conflict arose earlier.

• We may label the arc by the item that was 
accessed.

• Example



Testing for Conflict Serializability

• A schedule is conflict serializable if and only if its 
precedence graph is acyclic.

• Cycle-detection algorithms exist which take order n2

time, where n is the number of vertices in the graph.  

• (Better algorithms take order n + e where e is the 
number of edges.)

• If precedence graph is acyclic, the serializability order 
can be obtained by a topological sorting of the graph. 

• That is, a linear order consistent with the partial 
order of the graph.

• For example, a serializability order for the schedule 
(a)  would be one of either (b) or (c)



Recoverable Schedules
• Recoverable schedule — if a transaction Tj reads a data item previously written 

by a transaction Ti , then the commit operation of Ti must appear before the 
commit operation of Tj.

• The following schedule is not recoverable if T9 commits immediately after the 
read(A) operation.

• If T8 should abort, T9 would have read (and possibly shown to the user) an 
inconsistent database state.  Hence, database must ensure that schedules are 
recoverable.



Cascading Rollbacks
• Cascading rollback – a single transaction failure leads 

to a series of transaction rollbacks.  Consider the 
following schedule where none of the transactions has 
yet committed (so the schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.

• Can lead to the undoing of a significant amount of 
work



Cascadeless Schedules
• Cascadeless schedules — for each pair of 

transactions Ti and Tj such that Tj reads a data 
item previously written by Ti, the commit 
operation of Ti appears before the read 
operation of Tj.

• Every cascadeless schedule is also recoverable

• It is desirable to restrict the schedules to 
those that are cascadeless

• Example of  a schedule that is NOT 
cascadeless



Concurrency Control
• A database must provide a mechanism that will ensure 

that all possible schedules are both:
• Conflict serializable. 
• Recoverable and preferably cascadeless

• A policy in which only one transaction can execute at a 
time generates serial schedules, but provides a poor 
degree of concurrency

• Concurrency-control schemes tradeoff between the 
amount of concurrency they allow and the amount of 
overhead that they incur

• Testing a schedule for serializability after it has executed 
is a little too late! 

• Tests for serializability help us understand why a concurrency 
control protocol is correct

• Goal – to develop concurrency control protocols that will 
assure serializability.



Transaction Definition in SQL
• Data manipulation language must include a 

construct for specifying the set of actions that 
comprise a transaction.

• In SQL, a transaction begins implicitly.

• A transaction in SQL ends by:
• Commit work commits current transaction and begins a 

new one.
• Rollback work causes current transaction to abort.

• In almost all database systems, by default, every SQL 
statement also commits implicitly if it executes 
successfully

• Implicit commit can be turned off by a database directive
• E.g. in JDBC, connection.setAutoCommit(false);



View Serializability
• Let S and S´ be two schedules with the same set of transactions.  S and S´ are 

view equivalent if the following three conditions are met, for each data item 
Q,

1. If in schedule S, transaction Ti reads the initial value of Q, then in 
schedule S’ also transaction Ti must read the initial value of Q.

2. If in schedule S transaction Ti executes read(Q), and that value was 
produced by transaction Tj (if any), then in schedule S’ also transaction 
Ti must read the value of Q that was produced by the same write(Q) 
operation of transaction Tj .

3. The transaction (if any) that performs the final write(Q) operation in 
schedule S must also perform the final write(Q) operation in schedule 
S’.

• As can be seen, view equivalence is also based purely on reads and writes

alone.



View Serializability (Cont.)
• A schedule S is view serializable if it is view equivalent to a serial schedule.

• Every conflict serializable schedule is also view serializable.

• Below is a schedule which is view-serializable but not conflict serializable.

• What serial schedule is above equivalent to?

• Every view serializable schedule that is not conflict serializable has blind writes.



Test for View Serializability
• The precedence graph test for conflict serializability cannot be used directly to 

test for view serializability.

• Extension to test for view serializability has cost exponential in the size of 
the precedence graph.

• The problem of checking if a schedule is view serializable falls in the class of NP-
complete problems. 

• Thus, existence of an efficient algorithm is extremely unlikely.

• However ,practical algorithms that just check some sufficient conditions for 
view serializability can still be used.



More Complex Notions of Serializability
• The schedule below produces the same outcome as the serial schedule < T1, T5

>, yet is not conflict equivalent or view equivalent to it.  

• If we start with A = 1000 and B = 2000, the final result is 960 and 2040

• Determining such equivalence requires analysis of operations other than read 
and write.



Concurrency Control 



Lock-Based Protocols• A lock is a mechanism to control concurrent 
access to a data item

• Data items can be locked in two modes :
1.  exclusive (X) mode. Data item can be both 
read as well as   

written. X-lock is requested using lock-Xinstruction.
2.  shared (S) mode. Data item can only be 
read. S-lock is          

requested using lock-S instruction.

• Lock requests are made to the concurrency-
control manager by the programmer. 
Transaction can proceed only after request is 
granted.



Lock-Based Protocols (Cont.)• Lock-compatibility matrix

• A transaction may be granted a lock on an item if the 
requested lock is compatible with locks already held on the 
item by other transactions

• Any number of transactions can hold shared locks on an 
item, 

• But if any transaction holds an exclusive on the item no other 
transaction may hold any lock on the item.

• If a lock cannot be granted, the requesting transaction is 
made to wait till all incompatible locks held by other 
transactions have been released.  The lock is then granted.



Lock-Based Protocols (Cont.)• Example of a transaction performing locking:

T2: lock-S(A);

read (A);

unlock(A);

lock-S(B);

read (B);

unlock(B);

display(A+B)

• Locking as above is not sufficient to guarantee 
serializability — if A and B get updated in-between the 
read of A and B, the displayed sum would be wrong.

• A  locking protocol is a set of rules followed by all 
transactions while requesting and releasing locks. 
Locking protocols restrict the set of possible schedules.



The Two-Phase Locking Protocol
• This protocol ensures conflict-serializable 

schedules.

• Phase 1: Growing Phase
• Transaction may obtain locks 
• Transaction may not release locks

• Phase 2: Shrinking Phase
• Transaction may release locks
• Transaction may not obtain locks

• The protocol assures serializability. It can be 

proved that the transactions can be serialized in 

the order of their lock points (i.e., the point 

where a transaction acquired its final lock). 



The Two-Phase Locking Protocol 
(Cont.)

• There can be conflict serializable schedules that 
cannot be obtained if two-phase locking is used.  

• However, in the absence of extra information 
(e.g., ordering of  access to data), two-phase 
locking is needed for conflict serializability in the 
following sense:

• Given a transaction Ti that does not follow 
two-phase locking, we can find a transaction 
Tj that uses two-phase locking, and a 
schedule for Ti and Tj that is not conflict 
serializable.



Lock Conversions
• Two-phase locking with lock conversions:

– First Phase:        
• can acquire a lock-S on item
• can acquire a lock-X on item
• can convert a lock-S to a lock-X (upgrade)

– Second Phase:
• can release a lock-S
• can release a lock-X
• can convert a lock-X to a lock-S  (downgrade)

• This protocol assures serializability. But still 
relies on the programmer to insert the 
various  locking instructions.



Automatic Acquisition of Locks

• A transaction Ti issues the standard read/write 
instruction, without explicit locking calls.

• The operation read(D) is processed as:

if Ti has a lock on D

then

read(D) 
else begin

if necessary wait until no other  
transaction has a lock-X on D

grant Ti a lock-S on D;

read(D)
end



Automatic Acquisition of Locks (Cont.)
• write(D) is processed as:

if Ti has a  lock-X on D
then
write(D)

else begin
if necessary wait until no other transaction has any 

lock on D,
if Ti has a lock-S on D

then
upgrade lock on D to lock-X

else
grant Ti a lock-X on D

write(D)
end;

• All locks are released after commit or abort



Deadlocks
• Consider the partial schedule

• Neither T3 nor T4 can make progress — executing  lock-S(B) causes 
T4 to wait for T3 to release its lock on B, while executing  lock-X(A)
causes T3 to wait for T4 to release its lock on A.

• Such a situation is called a deadlock. 
• To handle a deadlock one of T3 or T4 must be rolled back 

and its locks released.



Deadlocks (Cont.)

• Two-phase locking does not ensure freedom 
from deadlocks.

• In addition to deadlocks, there is a possibility of 
starvation.

• Starvation occurs if the concurrency control 
manager is badly designed. For example:

• A transaction may be waiting for an X-lock on an 
item, while a sequence of other transactions request 
and are granted an S-lock on the same item.  

• The same transaction is repeatedly rolled back due 
to deadlocks.

• Concurrency control manager can be designed 
to prevent starvation.



Deadlocks (Cont.)

• The potential for deadlock exists in most locking 
protocols. Deadlocks are a necessary evil.

• When a deadlock occurs there is a possibility of 
cascading roll-backs. 

• Cascading roll-back is possible under two-phase locking. 
To avoid this, follow a modified protocol called strict 
two-phase locking -- a transaction must hold all its 
exclusive locks till it commits/aborts.

• Rigorous two-phase locking is even stricter. Here, all 
locks are held till commit/abort. In this protocol 
transactions can be serialized in the order in which they 
commit.



Implementation of Locking
• A lock manager can be implemented as a 

separate process to which transactions send lock 
and unlock requests

• The lock manager replies to a lock request by 
sending a lock grant messages (or a message 
asking the transaction to roll back, in case of  a 
deadlock)

• The requesting transaction waits until its request 
is answered

• The lock manager maintains a data-structure 
called a lock table to record granted locks and 
pending requests

• The lock table is usually implemented as an in-
memory hash table indexed on the name of the 
data item being locked



Lock Table
• Dark blue rectangles indicate granted locks; 

light blue indicate waiting requests

• Lock table also records the type of lock granted 
or requested

• New request is added to the end of the queue 
of requests for the data item, and granted if it 
is compatible with all earlier locks

• Unlock requests result in the request being 
deleted, and later requests are checked to see 
if they can now be granted

• If transaction aborts, all waiting or granted 
requests of the transaction are deleted 

• lock manager may keep a list of locks held 
by each transaction, to implement this 
efficiently



Deadlock Handling
• System is deadlocked if there is a set of 

transactions such that every transaction in the set 
is waiting for another transaction in the set.

• Deadlock prevention protocols ensure that the 
system will never enter into a deadlock state. 
Some prevention strategies :

• Require that each transaction locks all its data items 
before it begins execution (predeclaration).

• Impose partial ordering of all data items and require 
that a transaction can lock data items only in the order 
specified by the partial order.



More Deadlock Prevention Strategies
• Following schemes use transaction timestamps for 

the sake of deadlock prevention alone.

• wait-die scheme — non-preemptive
• older transaction may wait for younger one to release data 

item. (older means smaller timestamp). Younger 
transactions never wait for older ones; they are rolled back 
instead.

• a transaction may die several times before acquiring 
needed data item

• wound-wait scheme — preemptive
• older transaction wounds (forces rollback) of younger 

transaction instead of waiting for it. Younger transactions 
may wait for older ones.

• may be fewer rollbacks than wait-die scheme.



Deadlock prevention (Cont.)
• Both in wait-die and in wound-wait schemes, a 

rolled back transactions is restarted with its 
original timestamp. Older transactions thus have 
precedence over newer ones, and starvation is 
hence avoided.

• Timeout-Based Schemes:
• a transaction waits for a lock only for a specified 

amount of time. If the lock has not been granted 
within that time, the transaction is rolled back and 
restarted,

• Thus, deadlocks are not possible
• simple to implement; but starvation is possible. Also 

difficult to determine good value of the timeout 
interval.



Deadlock Detection
• Deadlocks can be described as a wait-for graph, 

which consists of a pair G = (V,E), 
• V is a set of vertices (all the transactions in the system)
• E is a set of edges; each element is an ordered pair Ti Tj.  

• If Ti  Tj is in E, then there is a directed edge from Ti
to Tj, implying that Ti is waiting for Tj to release a data 
item.

• When Ti requests a data item currently being held by 
Tj, then the edge Ti  Tj is inserted in the wait-for 
graph. This edge is removed only when Tj is no longer 
holding a data item needed by Ti.

• The system is in a deadlock state if and only if the 
wait-for graph has a cycle.  Must invoke a deadlock-
detection algorithm periodically to look for cycles.



Deadlock Detection (Cont.)

Wait-for graph without a cycle Wait-for graph with a cycle



Deadlock Recovery

• When deadlock is  detected :
• Some transaction will have to rolled back (made a 

victim) to break deadlock.  Select that transaction as 
victim that will incur minimum cost.

• Rollback -- determine how far to roll back 
transaction

• Total rollback: Abort the transaction and then restart it.

• More effective to roll back transaction only as far as 
necessary to break deadlock.

• Starvation happens if same transaction is always 
chosen as victim. Include the number of rollbacks in 
the cost factor to avoid starvation



Multiple Granularity
• Allow  data items to be of various sizes and define 

a hierarchy of data granularities, where the small 
granularities are nested within larger ones

• Can be represented graphically as a tree.

• When a transaction locks a node in the tree 
explicitly, it implicitly locks all the node's 
descendents in the same mode.

• Granularity of locking (level in tree where locking 
is done):

• fine granularity (lower in tree): high concurrency, high 
locking overhead

• coarse granularity  (higher in tree): low locking 
overhead, low concurrency



Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are
• database
• area 
• file
• record



Intention Lock Modes
• In addition to S and X lock modes, there are three 

additional lock modes with multiple granularity:
• intention-shared (IS): indicates explicit locking at a 

lower level of the tree but only with shared locks.
• intention-exclusive (IX): indicates explicit locking at a 

lower level with exclusive or shared locks
• shared and intention-exclusive (SIX): the subtree 

rooted by that node is locked explicitly in shared mode 
and explicit locking is being done at a lower level with 
exclusive-mode locks.

• intention locks allow a higher level node to be 
locked in S or X mode without having to check all 
descendent nodes.



Compatibility Matrix with Intention Lock Modes

• The compatibility matrix for all lock modes is: 



Multiple Granularity Locking Scheme
• Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.
2. The root of the tree must be locked first, and may be locked in any 

mode.
3. A node Q can be locked by Ti in S or IS mode only if the parent of Q

is currently locked by Ti in either IX or IS mode.
4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent 

of Q is currently locked by Ti in either IX or SIX mode.
5. Ti can lock a node only if it has not previously unlocked any node 

(that is, Ti is two-phase).
6. Ti can unlock a node Q only if none of the children of Q are currently 

locked by Ti.

• Observe that locks are acquired in root-to-leaf order, 
whereas they are released in leaf-to-root order.

• Lock granularity escalation: in case there are too many locks 
at a particular level, switch to higher granularity S or X lock



Timestamp-Based Protocols
• Each transaction is issued a timestamp when it enters the system. If 

an old transaction Ti has time-stamp TS(Ti), a new transaction Tj is 
assigned time-stamp TS(Tj) such that TS(Ti) <TS(Tj). 

• The protocol manages concurrent execution such that the time-
stamps determine the serializability order.

• In order to assure such behavior, the protocol maintains for each data 
Q two timestamp values:

• W-timestamp(Q) is the largest time-stamp of any transaction that executed 
write(Q) successfully.

• R-timestamp(Q) is the largest time-stamp of any transaction that executed 
read(Q) successfully.



Timestamp-Based Protocols (Cont.)

• The timestamp ordering protocol ensures that any 
conflicting read and write operations are executed 
in timestamp order.

• Suppose a transaction Ti issues a read(Q)
1. If TS(Ti)  W-timestamp(Q), then Ti needs to read a value 

of Q that was already overwritten.
 Hence, the read operation is rejected, and Ti is rolled back.

2. If TS(Ti)  W-timestamp(Q), then the read operation is 
executed, and R-timestamp(Q) is set to max(R-
timestamp(Q), TS(Ti)).



Timestamp-Based Protocols (Cont.)
• Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti

is producing was needed previously, and the system 
assumed that that value would never be produced. 
 Hence, the write operation is rejected, and Ti is rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to 
write an obsolete value of Q. 
 Hence, this write operation is rejected, and Ti is rolled back.

3. Otherwise, the write operation is executed, and W-
timestamp(Q) is set to TS(Ti).



Example Use of the Protocol

A partial schedule for several data items for transactions with

timestamps 1, 2, 3, 4, 5



Correctness of Timestamp-Ordering Protocol

• The timestamp-ordering protocol guarantees 
serializability since all the arcs in the precedence 
graph are of the form:

Thus, there will be no cycles in the precedence 
graph

• Timestamp protocol ensures freedom from 
deadlock as no transaction ever waits.  

• But the schedule may not be cascade-free, and may  
not even be recoverable.



Recoverability and Cascade Freedom
• Problem with timestamp-ordering protocol:

• Suppose Ti aborts, but Tj has read a data item written by  Ti

• Then Tj must abort; if Tj had been allowed to commit earlier, the 
schedule is not recoverable.

• Further, any transaction that has read a data item written by Tj
must abort

• This can lead to cascading rollback --- that is, a chain of rollbacks 

• Solution 1:
• A transaction is structured such that its writes are all performed 

at the end of its processing
• All writes of a transaction form an atomic action; no transaction 

may execute while a transaction is being written
• A transaction that aborts is restarted with a new timestamp

• Solution 2: Limited form of locking: wait for data to be 
committed before reading it

• Solution 3: Use commit dependencies to ensure 
recoverability



Thomas’ Write Rule
• Modified version of the timestamp-ordering protocol in 

which obsolete write operations may be ignored under 
certain circumstances.

• When Ti attempts to write data item Q, if TS(Ti) < W-
timestamp(Q), then Ti is attempting to write an obsolete 
value of {Q}. 

• Rather than rolling back Ti as the timestamp ordering protocol 
would have done, this {write} operation can be ignored.

• Otherwise this protocol is the same as the timestamp 
ordering protocol.

• Thomas' Write Rule allows greater potential concurrency. 

• Allows some view-serializable schedules that are not conflict-

serializable.


