
Transactions

Transaction Concept
• A transaction is a unit of program execution that

accesses and possibly updates various data
items.

• E.g., transaction to transfer $50 from account A
to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

• Two main issues to deal with:
• Failures of various kinds, such as hardware failures and

system crashes
• Concurrent execution of multiple transactions

Required Properties of a Transaction
• Consider a transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

• Atomicity requirement

• If the transaction fails after step 3 and before step 6, money will be “lost”
leading to an inconsistent database state

• Failure could be due to software or hardware

• The system should ensure that updates of a partially executed transaction are
not reflected in the database

• Durability requirement — once the user has been notified that the transaction has
completed (i.e., the transfer of the $50 has taken place), the updates to the
database by the transaction must persist even if there are software or hardware
failures.

Required Properties of a Transaction (Cont.)

• Consistency requirement in above example:
• The sum of A and B is unchanged by the execution of the transaction

• In general, consistency requirements include

• Explicitly specified integrity constraints such as primary keys and
foreign keys

• Implicit integrity constraints

• e.g., sum of balances of all accounts, minus sum of loan amounts
must equal value of cash-in-hand

• A transaction, when starting to execute, must see a consistent database.

• During transaction execution the database may be temporarily inconsistent.

• When the transaction completes successfully the database must be consistent

• Erroneous transaction logic can lead to inconsistency

Required Properties of a Transaction (Cont.)
• Isolation requirement — if between steps 3 and 6 (of the fund transfer

transaction) , another transaction T2 is allowed to access the partially updated
database, it will see an inconsistent database (the sum A + B will be less than it
should be).

T1 T2

1. read(A)

2. A := A – 50

3. write(A)
read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B

• Isolation can be ensured trivially by running transactions serially

• That is, one after the other.

• However, executing multiple transactions concurrently has significant benefits, as
we will see later.

ACID Properties

• Atomicity. Either all operations of the transaction are
properly reflected in the database or none are.

• Consistency. Execution of a transaction in isolation
preserves the consistency of the database.

• Isolation. Although multiple transactions may execute
concurrently, each transaction must be unaware of
other concurrently executing transactions.
Intermediate transaction results must be hidden from
other concurrently executed transactions.

• That is, for every pair of transactions Ti and Tj, it appears to Ti
that either Tj, finished execution before Ti started, or Tj
started execution after Ti finished.

• Durability. After a transaction completes successfully,
the changes it has made to the database persist, even if
there are system failures.

A transaction is a unit of program execution that accesses and possibly

updates various data items. To preserve the integrity of data the database

system must ensure:

Transaction State
• Active – the initial state; the transaction stays in this

state while it is executing

• Partially committed – after the final statement has
been executed.

• Failed -- after the discovery that normal execution
can no longer proceed.

• Aborted – after the transaction has been rolled back
and the database restored to its state prior to the
start of the transaction. Two options after it has
been aborted:

• Restart the transaction
• can be done only if no internal logical error

• Kill the transaction

• Committed – after successful completion.

Transaction State (Cont.)

Concurrent Executions
• Multiple transactions are allowed to run

concurrently in the system. Advantages are:
• Increased processor and disk utilization, leading to

better transaction throughput
• E.g. one transaction can be using the CPU while another

is reading from or writing to the disk

• Reduced average response time for transactions:
short transactions need not wait behind long ones.

• Concurrency control schemes – mechanisms to
achieve isolation

• That is, to control the interaction among the
concurrent transactions in order to prevent them
from destroying the consistency of the database

• Will study in Chapter 15, after studying notion of
correctness of concurrent executions.

Schedules
• Schedule – a sequences of instructions that specify

the chronological order in which instructions of
concurrent transactions are executed

• A schedule for a set of transactions must consist of all
instructions of those transactions

• Must preserve the order in which the instructions
appear in each individual transaction.

• A transaction that successfully completes its
execution will have a commit instructions as the
last statement

• By default transaction assumed to execute commit
instruction as its last step

• A transaction that fails to successfully complete its
execution will have an abort instruction as the last
statement

Schedule 1
• Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B.

• An example of a serial schedule in which T1 is followed by T2 :

Schedule 2
• A serial schedule in which T2 is followed by T1 :

Schedule 3
• Let T1 and T2 be the transactions defined previously. The following schedule

is not a serial schedule, but it is equivalent to Schedule 1.

Note -- In schedules 1, 2 and 3, the sum “A + B” is preserved.

Schedule 4
• The following concurrent schedule does not preserve the sum of “A

+ B”

Serializability
• Basic Assumption – Each transaction

preserves database consistency.

• Thus, serial execution of a set of transactions
preserves database consistency.

• A (possibly concurrent) schedule is
serializable if it is equivalent to a serial
schedule. Different forms of schedule
equivalence give rise to the notions of:

1. conflict serializability

2. view serializability

Simplified view of transactions
• We ignore operations other than read and

write instructions

• We assume that transactions may perform
arbitrary computations on data in local
buffers in between reads and writes.

• Our simplified schedules consist of only
read and write instructions.

Conflicting Instructions
• Let li and lj be two Instructions of transactions Ti

and Tj respectively. Instructions li and lj conflict if
and only if there exists some item Q accessed by
both li and lj, and at least one of these instructions
wrote Q.

1. li = read(Q), lj = read(Q). li and lj don’t
conflict.

2. li = read(Q), lj = write(Q). They conflict.
3. li = write(Q), lj = read(Q). They conflict
4. li = write(Q), lj = write(Q). They conflict

• Intuitively, a conflict between li and lj forces a
(logical) temporal order between them.

• If li and lj are consecutive in a schedule and they do not
conflict, their results would remain the same even if
they had been interchanged in the schedule.

Conflict Serializability
• If a schedule S can be transformed into a

schedule S´ by a series of swaps of non-
conflicting instructions, we say that S
and S´ are conflict equivalent.

• We say that a schedule S is conflict
serializable if it is conflict equivalent to a
serial schedule

Conflict Serializability (Cont.)
• Schedule 3 can be transformed into Schedule 6 -- a serial schedule where T2

follows T1, by a series of swaps of non-conflicting instructions. Therefore,
Schedule 3 is conflict serializable.

Schedule 3 Schedule 6

Conflict Serializability (Cont.)
• Example of a schedule that is not conflict

serializable:

• We are unable to swap instructions in the above
schedule to obtain either the serial schedule <
T3, T4 >, or the serial schedule < T4, T3 >.

Precedence Graph
• Consider some schedule of a set of transactions T1,

T2, ..., Tn

• Precedence graph — a direct graph where the
vertices are the transactions (names).

• We draw an arc from Ti to Tj if the two transaction
conflict, and Ti accessed the data item on which the
conflict arose earlier.

• We may label the arc by the item that was
accessed.

• Example

Testing for Conflict Serializability

• A schedule is conflict serializable if and only if its
precedence graph is acyclic.

• Cycle-detection algorithms exist which take order n2

time, where n is the number of vertices in the graph.

• (Better algorithms take order n + e where e is the
number of edges.)

• If precedence graph is acyclic, the serializability order
can be obtained by a topological sorting of the graph.

• That is, a linear order consistent with the partial
order of the graph.

• For example, a serializability order for the schedule
(a) would be one of either (b) or (c)

Recoverable Schedules
• Recoverable schedule — if a transaction Tj reads a data item previously written

by a transaction Ti , then the commit operation of Ti must appear before the
commit operation of Tj.

• The following schedule is not recoverable if T9 commits immediately after the
read(A) operation.

• If T8 should abort, T9 would have read (and possibly shown to the user) an
inconsistent database state. Hence, database must ensure that schedules are
recoverable.

Cascading Rollbacks
• Cascading rollback – a single transaction failure leads

to a series of transaction rollbacks. Consider the
following schedule where none of the transactions has
yet committed (so the schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.

• Can lead to the undoing of a significant amount of
work

Cascadeless Schedules
• Cascadeless schedules — for each pair of

transactions Ti and Tj such that Tj reads a data
item previously written by Ti, the commit
operation of Ti appears before the read
operation of Tj.

• Every cascadeless schedule is also recoverable

• It is desirable to restrict the schedules to
those that are cascadeless

• Example of a schedule that is NOT
cascadeless

Concurrency Control
• A database must provide a mechanism that will ensure

that all possible schedules are both:
• Conflict serializable.
• Recoverable and preferably cascadeless

• A policy in which only one transaction can execute at a
time generates serial schedules, but provides a poor
degree of concurrency

• Concurrency-control schemes tradeoff between the
amount of concurrency they allow and the amount of
overhead that they incur

• Testing a schedule for serializability after it has executed
is a little too late!

• Tests for serializability help us understand why a concurrency
control protocol is correct

• Goal – to develop concurrency control protocols that will
assure serializability.

Transaction Definition in SQL
• Data manipulation language must include a

construct for specifying the set of actions that
comprise a transaction.

• In SQL, a transaction begins implicitly.

• A transaction in SQL ends by:
• Commit work commits current transaction and begins a

new one.
• Rollback work causes current transaction to abort.

• In almost all database systems, by default, every SQL
statement also commits implicitly if it executes
successfully

• Implicit commit can be turned off by a database directive
• E.g. in JDBC, connection.setAutoCommit(false);

View Serializability
• Let S and S´ be two schedules with the same set of transactions. S and S´ are

view equivalent if the following three conditions are met, for each data item
Q,

1. If in schedule S, transaction Ti reads the initial value of Q, then in
schedule S’ also transaction Ti must read the initial value of Q.

2. If in schedule S transaction Ti executes read(Q), and that value was
produced by transaction Tj (if any), then in schedule S’ also transaction
Ti must read the value of Q that was produced by the same write(Q)
operation of transaction Tj .

3. The transaction (if any) that performs the final write(Q) operation in
schedule S must also perform the final write(Q) operation in schedule
S’.

• As can be seen, view equivalence is also based purely on reads and writes

alone.

View Serializability (Cont.)
• A schedule S is view serializable if it is view equivalent to a serial schedule.

• Every conflict serializable schedule is also view serializable.

• Below is a schedule which is view-serializable but not conflict serializable.

• What serial schedule is above equivalent to?

• Every view serializable schedule that is not conflict serializable has blind writes.

Test for View Serializability
• The precedence graph test for conflict serializability cannot be used directly to

test for view serializability.

• Extension to test for view serializability has cost exponential in the size of
the precedence graph.

• The problem of checking if a schedule is view serializable falls in the class of NP-
complete problems.

• Thus, existence of an efficient algorithm is extremely unlikely.

• However ,practical algorithms that just check some sufficient conditions for
view serializability can still be used.

More Complex Notions of Serializability
• The schedule below produces the same outcome as the serial schedule < T1, T5

>, yet is not conflict equivalent or view equivalent to it.

• If we start with A = 1000 and B = 2000, the final result is 960 and 2040

• Determining such equivalence requires analysis of operations other than read
and write.

Concurrency Control

Lock-Based Protocols• A lock is a mechanism to control concurrent
access to a data item

• Data items can be locked in two modes :
1. exclusive (X) mode. Data item can be both
read as well as

written. X-lock is requested using lock-Xinstruction.
2. shared (S) mode. Data item can only be
read. S-lock is

requested using lock-S instruction.

• Lock requests are made to the concurrency-
control manager by the programmer.
Transaction can proceed only after request is
granted.

Lock-Based Protocols (Cont.)• Lock-compatibility matrix

• A transaction may be granted a lock on an item if the
requested lock is compatible with locks already held on the
item by other transactions

• Any number of transactions can hold shared locks on an
item,

• But if any transaction holds an exclusive on the item no other
transaction may hold any lock on the item.

• If a lock cannot be granted, the requesting transaction is
made to wait till all incompatible locks held by other
transactions have been released. The lock is then granted.

Lock-Based Protocols (Cont.)• Example of a transaction performing locking:

T2: lock-S(A);

read (A);

unlock(A);

lock-S(B);

read (B);

unlock(B);

display(A+B)

• Locking as above is not sufficient to guarantee
serializability — if A and B get updated in-between the
read of A and B, the displayed sum would be wrong.

• A locking protocol is a set of rules followed by all
transactions while requesting and releasing locks.
Locking protocols restrict the set of possible schedules.

The Two-Phase Locking Protocol
• This protocol ensures conflict-serializable

schedules.

• Phase 1: Growing Phase
• Transaction may obtain locks
• Transaction may not release locks

• Phase 2: Shrinking Phase
• Transaction may release locks
• Transaction may not obtain locks

• The protocol assures serializability. It can be

proved that the transactions can be serialized in

the order of their lock points (i.e., the point

where a transaction acquired its final lock).

The Two-Phase Locking Protocol
(Cont.)

• There can be conflict serializable schedules that
cannot be obtained if two-phase locking is used.

• However, in the absence of extra information
(e.g., ordering of access to data), two-phase
locking is needed for conflict serializability in the
following sense:

• Given a transaction Ti that does not follow
two-phase locking, we can find a transaction
Tj that uses two-phase locking, and a
schedule for Ti and Tj that is not conflict
serializable.

Lock Conversions
• Two-phase locking with lock conversions:

– First Phase:
• can acquire a lock-S on item
• can acquire a lock-X on item
• can convert a lock-S to a lock-X (upgrade)

– Second Phase:
• can release a lock-S
• can release a lock-X
• can convert a lock-X to a lock-S (downgrade)

• This protocol assures serializability. But still
relies on the programmer to insert the
various locking instructions.

Automatic Acquisition of Locks

• A transaction Ti issues the standard read/write
instruction, without explicit locking calls.

• The operation read(D) is processed as:

if Ti has a lock on D

then

read(D)
else begin

if necessary wait until no other
transaction has a lock-X on D

grant Ti a lock-S on D;

read(D)
end

Automatic Acquisition of Locks (Cont.)
• write(D) is processed as:

if Ti has a lock-X on D
then
write(D)

else begin
if necessary wait until no other transaction has any

lock on D,
if Ti has a lock-S on D

then
upgrade lock on D to lock-X

else
grant Ti a lock-X on D

write(D)
end;

• All locks are released after commit or abort

Deadlocks
• Consider the partial schedule

• Neither T3 nor T4 can make progress — executing lock-S(B) causes
T4 to wait for T3 to release its lock on B, while executing lock-X(A)
causes T3 to wait for T4 to release its lock on A.

• Such a situation is called a deadlock.
• To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.

Deadlocks (Cont.)

• Two-phase locking does not ensure freedom
from deadlocks.

• In addition to deadlocks, there is a possibility of
starvation.

• Starvation occurs if the concurrency control
manager is badly designed. For example:

• A transaction may be waiting for an X-lock on an
item, while a sequence of other transactions request
and are granted an S-lock on the same item.

• The same transaction is repeatedly rolled back due
to deadlocks.

• Concurrency control manager can be designed
to prevent starvation.

Deadlocks (Cont.)

• The potential for deadlock exists in most locking
protocols. Deadlocks are a necessary evil.

• When a deadlock occurs there is a possibility of
cascading roll-backs.

• Cascading roll-back is possible under two-phase locking.
To avoid this, follow a modified protocol called strict
two-phase locking -- a transaction must hold all its
exclusive locks till it commits/aborts.

• Rigorous two-phase locking is even stricter. Here, all
locks are held till commit/abort. In this protocol
transactions can be serialized in the order in which they
commit.

Implementation of Locking
• A lock manager can be implemented as a

separate process to which transactions send lock
and unlock requests

• The lock manager replies to a lock request by
sending a lock grant messages (or a message
asking the transaction to roll back, in case of a
deadlock)

• The requesting transaction waits until its request
is answered

• The lock manager maintains a data-structure
called a lock table to record granted locks and
pending requests

• The lock table is usually implemented as an in-
memory hash table indexed on the name of the
data item being locked

Lock Table
• Dark blue rectangles indicate granted locks;

light blue indicate waiting requests

• Lock table also records the type of lock granted
or requested

• New request is added to the end of the queue
of requests for the data item, and granted if it
is compatible with all earlier locks

• Unlock requests result in the request being
deleted, and later requests are checked to see
if they can now be granted

• If transaction aborts, all waiting or granted
requests of the transaction are deleted

• lock manager may keep a list of locks held
by each transaction, to implement this
efficiently

Deadlock Handling
• System is deadlocked if there is a set of

transactions such that every transaction in the set
is waiting for another transaction in the set.

• Deadlock prevention protocols ensure that the
system will never enter into a deadlock state.
Some prevention strategies :

• Require that each transaction locks all its data items
before it begins execution (predeclaration).

• Impose partial ordering of all data items and require
that a transaction can lock data items only in the order
specified by the partial order.

More Deadlock Prevention Strategies
• Following schemes use transaction timestamps for

the sake of deadlock prevention alone.

• wait-die scheme — non-preemptive
• older transaction may wait for younger one to release data

item. (older means smaller timestamp). Younger
transactions never wait for older ones; they are rolled back
instead.

• a transaction may die several times before acquiring
needed data item

• wound-wait scheme — preemptive
• older transaction wounds (forces rollback) of younger

transaction instead of waiting for it. Younger transactions
may wait for older ones.

• may be fewer rollbacks than wait-die scheme.

Deadlock prevention (Cont.)
• Both in wait-die and in wound-wait schemes, a

rolled back transactions is restarted with its
original timestamp. Older transactions thus have
precedence over newer ones, and starvation is
hence avoided.

• Timeout-Based Schemes:
• a transaction waits for a lock only for a specified

amount of time. If the lock has not been granted
within that time, the transaction is rolled back and
restarted,

• Thus, deadlocks are not possible
• simple to implement; but starvation is possible. Also

difficult to determine good value of the timeout
interval.

Deadlock Detection
• Deadlocks can be described as a wait-for graph,

which consists of a pair G = (V,E),
• V is a set of vertices (all the transactions in the system)
• E is a set of edges; each element is an ordered pair Ti Tj.

• If Ti Tj is in E, then there is a directed edge from Ti
to Tj, implying that Ti is waiting for Tj to release a data
item.

• When Ti requests a data item currently being held by
Tj, then the edge Ti Tj is inserted in the wait-for
graph. This edge is removed only when Tj is no longer
holding a data item needed by Ti.

• The system is in a deadlock state if and only if the
wait-for graph has a cycle. Must invoke a deadlock-
detection algorithm periodically to look for cycles.

Deadlock Detection (Cont.)

Wait-for graph without a cycle Wait-for graph with a cycle

Deadlock Recovery

• When deadlock is detected :
• Some transaction will have to rolled back (made a

victim) to break deadlock. Select that transaction as
victim that will incur minimum cost.

• Rollback -- determine how far to roll back
transaction

• Total rollback: Abort the transaction and then restart it.

• More effective to roll back transaction only as far as
necessary to break deadlock.

• Starvation happens if same transaction is always
chosen as victim. Include the number of rollbacks in
the cost factor to avoid starvation

Multiple Granularity
• Allow data items to be of various sizes and define

a hierarchy of data granularities, where the small
granularities are nested within larger ones

• Can be represented graphically as a tree.

• When a transaction locks a node in the tree
explicitly, it implicitly locks all the node's
descendents in the same mode.

• Granularity of locking (level in tree where locking
is done):

• fine granularity (lower in tree): high concurrency, high
locking overhead

• coarse granularity (higher in tree): low locking
overhead, low concurrency

Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are
• database
• area
• file
• record

Intention Lock Modes
• In addition to S and X lock modes, there are three

additional lock modes with multiple granularity:
• intention-shared (IS): indicates explicit locking at a

lower level of the tree but only with shared locks.
• intention-exclusive (IX): indicates explicit locking at a

lower level with exclusive or shared locks
• shared and intention-exclusive (SIX): the subtree

rooted by that node is locked explicitly in shared mode
and explicit locking is being done at a lower level with
exclusive-mode locks.

• intention locks allow a higher level node to be
locked in S or X mode without having to check all
descendent nodes.

Compatibility Matrix with Intention Lock Modes

• The compatibility matrix for all lock modes is:

Multiple Granularity Locking Scheme
• Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.
2. The root of the tree must be locked first, and may be locked in any

mode.
3. A node Q can be locked by Ti in S or IS mode only if the parent of Q

is currently locked by Ti in either IX or IS mode.
4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent

of Q is currently locked by Ti in either IX or SIX mode.
5. Ti can lock a node only if it has not previously unlocked any node

(that is, Ti is two-phase).
6. Ti can unlock a node Q only if none of the children of Q are currently

locked by Ti.

• Observe that locks are acquired in root-to-leaf order,
whereas they are released in leaf-to-root order.

• Lock granularity escalation: in case there are too many locks
at a particular level, switch to higher granularity S or X lock

Timestamp-Based Protocols
• Each transaction is issued a timestamp when it enters the system. If

an old transaction Ti has time-stamp TS(Ti), a new transaction Tj is
assigned time-stamp TS(Tj) such that TS(Ti) <TS(Tj).

• The protocol manages concurrent execution such that the time-
stamps determine the serializability order.

• In order to assure such behavior, the protocol maintains for each data
Q two timestamp values:

• W-timestamp(Q) is the largest time-stamp of any transaction that executed
write(Q) successfully.

• R-timestamp(Q) is the largest time-stamp of any transaction that executed
read(Q) successfully.

Timestamp-Based Protocols (Cont.)

• The timestamp ordering protocol ensures that any
conflicting read and write operations are executed
in timestamp order.

• Suppose a transaction Ti issues a read(Q)
1. If TS(Ti) W-timestamp(Q), then Ti needs to read a value

of Q that was already overwritten.
 Hence, the read operation is rejected, and Ti is rolled back.

2. If TS(Ti) W-timestamp(Q), then the read operation is
executed, and R-timestamp(Q) is set to max(R-
timestamp(Q), TS(Ti)).

Timestamp-Based Protocols (Cont.)
• Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti

is producing was needed previously, and the system
assumed that that value would never be produced.
 Hence, the write operation is rejected, and Ti is rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to
write an obsolete value of Q.
 Hence, this write operation is rejected, and Ti is rolled back.

3. Otherwise, the write operation is executed, and W-
timestamp(Q) is set to TS(Ti).

Example Use of the Protocol

A partial schedule for several data items for transactions with

timestamps 1, 2, 3, 4, 5

Correctness of Timestamp-Ordering Protocol

• The timestamp-ordering protocol guarantees
serializability since all the arcs in the precedence
graph are of the form:

Thus, there will be no cycles in the precedence
graph

• Timestamp protocol ensures freedom from
deadlock as no transaction ever waits.

• But the schedule may not be cascade-free, and may
not even be recoverable.

Recoverability and Cascade Freedom
• Problem with timestamp-ordering protocol:

• Suppose Ti aborts, but Tj has read a data item written by Ti

• Then Tj must abort; if Tj had been allowed to commit earlier, the
schedule is not recoverable.

• Further, any transaction that has read a data item written by Tj
must abort

• This can lead to cascading rollback --- that is, a chain of rollbacks

• Solution 1:
• A transaction is structured such that its writes are all performed

at the end of its processing
• All writes of a transaction form an atomic action; no transaction

may execute while a transaction is being written
• A transaction that aborts is restarted with a new timestamp

• Solution 2: Limited form of locking: wait for data to be
committed before reading it

• Solution 3: Use commit dependencies to ensure
recoverability

Thomas’ Write Rule
• Modified version of the timestamp-ordering protocol in

which obsolete write operations may be ignored under
certain circumstances.

• When Ti attempts to write data item Q, if TS(Ti) < W-
timestamp(Q), then Ti is attempting to write an obsolete
value of {Q}.

• Rather than rolling back Ti as the timestamp ordering protocol
would have done, this {write} operation can be ignored.

• Otherwise this protocol is the same as the timestamp
ordering protocol.

• Thomas' Write Rule allows greater potential concurrency.

• Allows some view-serializable schedules that are not conflict-

serializable.

