
Validation-Based Protocol
• Execution of transaction Ti is done in three phases.

1. Read and execution phase: Transaction Ti writes only to
temporary local variables

2. Validation phase: Transaction Ti performs a ''validation test''
to determine if local variables can be written without violating
serializability.

3. Write phase: If Ti is validated, the updates are applied to the
database; otherwise, Ti is rolled back.

• The three phases of concurrently executing transactions can be
interleaved, but each transaction must go through the three
phases in that order.
• Assume for simplicity that the validation and write phase occur together,

atomically and serially
• I.e., only one transaction executes validation/write at a time.

• Also called as optimistic concurrency control since transaction
executes fully in the hope that all will go well during validation

Validation-Based Protocol (Cont.)
• Each transaction Ti has 3 timestamps

• Start(Ti) : the time when Ti started its execution
• Validation(Ti): the time when Ti entered its validation phase
• Finish(Ti) : the time when Ti finished its write phase

• Serializability order is determined by timestamp given
at validation time; this is done to increase
concurrency.
• Thus, TS(Ti) is given the value of Validation(Ti).

• This protocol is useful and gives greater degree of
concurrency if probability of conflicts is low.
• because the serializability order is not pre-decided, and
• relatively few transactions will have to be rolled back.

Validation Test for Transaction Tj• If for all Ti with TS (Ti) < TS (Tj) either one of the
following condition holds:
• finish(Ti) < start(Tj)
• start(Tj) < finish(Ti) < validation(Tj) and the set of data

items written by Ti does not intersect with the set of
data items read by Tj.

then validation succeeds and Tj can be committed.
Otherwise, validation fails and Tj is aborted.

• Justification: Either the first condition is satisfied,
and there is no overlapped execution, or the
second condition is satisfied and
 the writes of Tj do not affect reads of Ti since they occur

after Ti has finished its reads.
 the writes of Ti do not affect reads of Tj since Tj does

not read any item written by Ti.

Schedule Produced by Validation
• Example of schedule produced using validation

Multiversion Schemes
• Multiversion schemes keep old versions of data item

to increase concurrency.
• Multiversion Timestamp Ordering
• Multiversion Two-Phase Locking

• Each successful write results in the creation of a new
version of the data item written.

• Use timestamps to label versions.

• When a read(Q) operation is issued, select an
appropriate version of Q based on the timestamp of
the transaction, and return the value of the selected
version.

• reads never have to wait as an appropriate version is
returned immediately.

Multiversion Timestamp Ordering
• Each data item Q has a sequence of versions <Q1,

Q2,...., Qm>. Each version Qk contains three data fields:
• Content -- the value of version Qk.

• W-timestamp(Qk) -- timestamp of the transaction that
created (wrote) version Qk

• R-timestamp(Qk) -- largest timestamp of a transaction that
successfully read version Qk

• When a transaction Ti creates a new version Qk of Q,
Qk's W-timestamp and R-timestamp are initialized to
TS(Ti).

• R-timestamp of Qk is updated whenever a transaction
Tj reads Qk, and TS(Tj) > R-timestamp(Qk).

Multiversion Timestamp Ordering
(Cont)

• Suppose that transaction Ti issues a read(Q) or write(Q)
operation. Let Qk denote the version of Q whose write
timestamp is the largest write timestamp less than or equal
to TS(Ti).

1. If transaction Ti issues a read(Q), then the value returned is the
content of version Qk.

2. If transaction Ti issues a write(Q)
1. if TS(Ti) < R-timestamp(Qk), then transaction Ti is rolled back.
2. if TS(Ti) = W-timestamp(Qk), the contents of Qk are overwritten

3. else a new version of Q is created.

• Observe that
• Reads always succeed
• A write by Ti is rejected if some other transaction Tj that (in the

serialization order defined by the timestamp values) should read
Ti's write, has already read a version created by a transaction older
than Ti.

• Protocol guarantees serializability

Multiversion Two-Phase Locking
• Differentiates between read-only transactions and

update transactions

• Update transactions acquire read and write locks, and
hold all locks up to the end of the transaction. That is,
update transactions follow rigorous two-phase locking.
• Each successful write results in the creation of a new version

of the data item written.
• Each version of a data item has a single timestamp whose

value is obtained from a counter ts-counter that is
incremented during commit processing.

• Read-only transactions are assigned a timestamp by
reading the current value of ts-counter before they
start execution; they follow the multiversion
timestamp-ordering protocol for performing reads.

Multiversion Two-Phase Locking (Cont.)
• When an update transaction wants to read a data item:

• it obtains a shared lock on it, and reads the latest version.

• When it wants to write an item
• it obtains X lock on; it then creates a new version of the item and

sets this version's timestamp to .

• When update transaction Ti completes, commit processing
occurs:
• Ti sets timestamp on the versions it has created to ts-counter + 1
• Ti increments ts-counter by 1

• Read-only transactions that start after Ti increments ts-
counter will see the values updated by Ti.

• Read-only transactions that start before Ti increments the
ts-counter will see the value before the updates by Ti.

• Only serializable schedules are produced.

MVCC: Implementation Issues

• Creation of multiple versions increases storage overhead
• Extra tuples

• Extra space in each tuple for storing version information

• Versions can, however, be garbage collected
• E.g. if Q has two versions Q5 and Q9, and the oldest active transaction has

timestamp > 9, than Q5 will never be required again

Snapshot Isolation
• Motivation: Decision support queries that read large

amounts of data have concurrency conflicts with OLTP
transactions that update a few rows
• Poor performance results

• Solution 1: Give logical “snapshot” of database state to
read only transactions, read-write transactions use normal
locking
• Multiversion 2-phase locking
• Works well, but how does system know a transaction is read only?

• Solution 2: Give snapshot of database state to every
transaction, updates alone use 2-phase locking to guard
against concurrent updates
• Problem: variety of anomalies such as lost update can result
• Partial solution: snapshot isolation level (next slide)

• Proposed by Berenson et al, SIGMOD 1995
• Variants implemented in many database systems

• E.g. Oracle, PostgreSQL, SQL Server 2005

Snapshot Isolation

• A transaction T1 executing with Snapshot
Isolation

• takes snapshot of committed data at start

• always reads/modifies data in its own
snapshot

• updates of concurrent transactions are not
visible to T1

• writes of T1 complete when it commits

• First-committer-wins rule:

• Commits only if no other concurrent
transaction has already written data
that T1 intends to write.

T1 T2 T3

W(Y := 1)

Commit

Start

R(X) 0

R(Y) 1

W(X:=2)

W(Z:=3)

Commit

R(Z) 0

R(Y) 1

W(X:=3)

Commit-Req

Abort

Concurrent updates not visible

Own updates are visible

Not first-committer of X

Serialization error, T2 is rolled back

Snapshot Read
 Concurrent updates invisible to snapshot read

Snapshot Write: First Committer
Wins

• Variant: “First-updater-wins”

• Check for concurrent updates when write occurs by locking item

• But lock should be held till all concurrent transactions have finished

• (Oracle uses this plus some extra features)

• Differs only in when abort occurs, otherwise equivalent

Benefits of SI
• Reading is never blocked,

• and also doesn’t block other txns activities

• Performance similar to Read Committed

• Avoids the usual anomalies
• No dirty read
• No lost update
• No non-repeatable read
• Predicate based selects are repeatable (no phantoms)

• Problems with SI
• SI does not always give serializable executions

• Serializable: among two concurrent txns, one sees the effects of
the other

• In SI: neither sees the effects of the other

• Result: Integrity constraints can be violated

Snapshot Isolation

• E.g. of problem with SI
• T1: x:=y
• T2: y:= x
• Initially x = 3 and y = 17

• Serial execution: x = ??, y = ??
• if both transactions start at the same time, with snapshot isolation: x = ?? , y = ??

• Called skew write

• Skew also occurs with inserts
• E.g:

• Find max order number among all orders
• Create a new order with order number = previous max + 1

Snapshot Isolation Anomalies

• SI breaks serializability when txns modify different items, each based on a previous state of the item the other modified

• Not very common in practice

• E.g., the TPC-C benchmark runs correctly under SI

• when txns conflict due to modifying different data, there is usually also a shared item they both modify too (like
a total quantity) so SI will abort one of them

• But does occur

• Application developers should be careful about write skew

• SI can also cause a read-only transaction anomaly, where read-only transaction may see an inconsistent state even if
updaters are serializable

• We omit details

• Using snapshots to verify primary/foreign key integrity can lead to inconsistency

• Integrity constraint checking usually done outside of snapshot

Deadlocks
• Consider the following two transactions:

T1: write (X) T2: write(Y)

write(Y) write(X)

• Schedule with deadlock

Recovery System

Failure Classification
• Transaction failure :

• Logical errors: transaction cannot complete due to some
internal error condition

• System errors: the database system must terminate an
active transaction due to an error condition (e.g., deadlock)

• System crash: a power failure or other hardware or
software failure causes the system to crash.
• Fail-stop assumption: non-volatile storage contents are

assumed to not be corrupted by system crash
• Database systems have numerous integrity checks to prevent

corruption of disk data

• Disk failure: a head crash or similar disk failure
destroys all or part of disk storage
• Destruction is assumed to be detectable: disk drives use

checksums to detect failures

Recovery Algorithms
• Consider transaction Ti that transfers $50 from account A

to account B
• Two updates: subtract 50 from A and add 50 to B

• Transaction Ti requires updates to A and B to be output
to the database.
• A failure may occur after one of these modifications have been

made but before both of them are made.
• Modifying the database without ensuring that the transaction

will commit may leave the database in an inconsistent state
• Not modifying the database may result in lost updates if failure

occurs just after transaction commits

• Recovery algorithms have two parts
1. Actions taken during normal transaction processing to ensure

enough information exists to recover from failures
2. Actions taken after a failure to recover the database contents to

a state that ensures atomicity, consistency and durability

Storage Structure
• Volatile storage:

• does not survive system crashes
• examples: main memory, cache memory

• Nonvolatile storage:
• survives system crashes
• examples: disk, tape, flash memory,

non-volatile (battery backed up) RAM
• but may still fail, losing data

• Stable storage:
• a mythical form of storage that survives all failures
• approximated by maintaining multiple copies on distinct

nonvolatile media
• See book for more details on how to implement stable

storage

Stable-Storage Implementation

• Maintain multiple copies of each block on separate disks
• copies can be at remote sites to protect against disasters such as

fire or flooding.

• Failure during data transfer can still result in inconsistent
copies: Block transfer can result in
• Successful completion
• Partial failure: destination block has incorrect information
• Total failure: destination block was never updated

• Protecting storage media from failure during data transfer
(one solution):
• Execute output operation as follows (assuming two copies of

each block):
1. Write the information onto the first physical block.
2. When the first write successfully completes, write the same information

onto the second physical block.
3. The output is completed only after the second write successfully

completes.

Stable-Storage Implementation (Cont.)

• Protecting storage media from failure during data
transfer (cont.):

• Copies of a block may differ due to failure during
output operation. To recover from failure:
1. First find inconsistent blocks:

1. Expensive solution: Compare the two copies of every disk block.
2. Better solution:

 Record in-progress disk writes on non-volatile storage (Non-volatile RAM or special area of
disk).

 Use this information during recovery to find blocks that may be inconsistent, and only
compare copies of these.

 Used in hardware RAID systems

2. If either copy of an inconsistent block is detected to have
an error (bad checksum), overwrite it by the other copy. If
both have no error, but are different, overwrite the second
block by the first block.

Data Access
• Physical blocks are those blocks residing on the disk.

• Buffer blocks are the blocks residing temporarily in
main memory.

• Block movements between disk and main memory
are initiated through the following two operations:
• input(B) transfers the physical block B to main memory.

• output(B) transfers the buffer block B to the disk, and
replaces the appropriate physical block there.

• We assume, for simplicity, that each data item fits in,
and is stored inside, a single block.

Example of Data Access
X

Y

A

B

x1

y1

buffer

Buffer Block A

Buffer Block B

input(A)

output(B)

read(X)

write(Y)

disk

work area

of T1

work area

of T2

memory

x2

Data Access (Cont.)
• Each transaction Ti has its private work-area in which

local copies of all data items accessed and updated by
it are kept.
• Ti's local copy of a data item X is called xi.

• Transferring data items between system buffer blocks
and its private work-area done by:
• read(X) assigns the value of data item X to the local variable

xi.
• write(X) assigns the value of local variable xi to data item

{X} in the buffer block.
• Note: output(BX) need not immediately follow write(X).

System can perform the output operation when it deems
fit.

• Transactions
• Must perform read(X) before accessing X for the first time

(subsequent reads can be from local copy)
• write(X) can be executed at any time before the transaction

commits

Recovery and Atomicity

• To ensure atomicity despite failures, we first output information
describing the modifications to stable storage without modifying the
database itself.

• We study log-based recovery mechanisms in detail
• We first present key concepts

• And then present the actual recovery algorithm

• Less used alternative: shadow-copy and shadow-paging (brief details
in book)

shadow-copy

Log-Based Recovery
• A log is kept on stable storage.

• The log is a sequence of log records, and maintains a record of
update activities on the database.

• When transaction Ti starts, it registers itself by writing a
<Ti start>log record

• Before Ti executes write(X), a log record
<Ti, X, V1, V2>

is written, where V1 is the value of X before the write (the
old value), and V2 is the value to be written to X (the new
value).

• When Ti finishes it last statement, the log record <Ti
commit> is written.

• Two approaches using logs
• Deferred database modification
• Immediate database modification

Immediate Database Modification
• The immediate-modification scheme allows updates of an

uncommitted transaction to be made to the buffer, or the
disk itself, before the transaction commits

• Update log record must be written before database item is
written
• We assume that the log record is output directly to stable storage
• (Will see later that how to postpone log record output to some

extent)

• Output of updated blocks to stable storage can take place
at any time before or after transaction commit

• Order in which blocks are output can be different from the
order in which they are written.

• The deferred-modification scheme performs updates to
buffer/disk only at the time of transaction commit
• Simplifies some aspects of recovery
• But has overhead of storing local copy

Transaction Commit

• A transaction is said to have committed when its commit log record is
output to stable storage
• all previous log records of the transaction must have been output already

• Writes performed by a transaction may still be in the buffer when the
transaction commits, and may be output later

Immediate Database Modification Example

Log Write Output

<T0 start>
<T0, A, 1000, 950>
<To, B, 2000, 2050

A = 950
B = 2050

<T0 commit>
<T1 start>
<T1, C, 700, 600>

C = 600
BB , BC

<T1 commit>
BA

• Note: BX denotes block containing X.

BC output before

T1 commits

BA output after T0

commits

Concurrency Control and Recovery

• With concurrent transactions, all transactions share a single disk buffer and
a single log
• A buffer block can have data items updated by one or more transactions

• We assume that if a transaction Ti has modified an item, no other
transaction can modify the same item until Ti has committed or aborted
• i.e. the updates of uncommitted transactions should not be visible to other

transactions
• Otherwise how to perform undo if T1 updates A, then T2 updates A and commits, and finally

T1 has to abort?

• Can be ensured by obtaining exclusive locks on updated items and holding the locks
till end of transaction (strict two-phase locking)

• Log records of different transactions may be interspersed in the log.

Undo and Redo Operations

• Undo of a log record <Ti, X, V1, V2> writes the old value V1 to X

• Redo of a log record <Ti, X, V1, V2> writes the new value V2 to X

• Undo and Redo of Transactions
• undo(Ti) restores the value of all data items updated by Ti to their old values,

going backwards from the last log record for Ti
• each time a data item X is restored to its old value V a special log record <Ti , X, V> is

written out
• when undo of a transaction is complete, a log record

<Ti abort> is written out.

• redo(Ti) sets the value of all data items updated by Ti to the new values, going
forward from the first log record for Ti
• No logging is done in this case

Undo and Redo on Recovering from Failure
• When recovering after failure:

• Transaction Ti needs to be undone if the log
• contains the record <Ti start>,

• but does not contain either the record <Ti commit> or <Ti abort>.

• Transaction Ti needs to be redone if the log
• contains the records <Ti start>

• and contains the record <Ti commit> or <Ti abort>

• Note that If transaction Ti was undone earlier and the
<Ti abort> record written to the log, and then a
failure occurs, on recovery from failure Ti is redone
• such a redo redoes all the original actions including the

steps that restored old values
• Known as repeating history

• Seems wasteful, but simplifies recovery greatly

Immediate DB Modification Recovery Example

Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:

(a) undo (T0): B is restored to 2000 and A to 1000, and log records
<T0, B, 2000>, <T0, A, 1000>, <T0, abort> are written out

(b) redo (T0) and undo (T1): A and B are set to 950 and 2050 and C is
restored to 700. Log records <T1, C, 700>, <T1, abort> are written out.

(c) redo (T0) and redo (T1): A and B are set to 950 and 2050

respectively. Then C is set to 600

Checkpoints
• Redoing/undoing all transactions recorded in the log

can be very slow
1. processing the entire log is time-consuming if the system

has run for a long time
2. we might unnecessarily redo transactions which have

already output their updates to the database.

• Streamline recovery procedure by periodically
performing checkpointing
1. Output all log records currently residing in main memory

onto stable storage.
2. Output all modified buffer blocks to the disk.
3. Write a log record < checkpoint L> onto stable storage

where L is a list of all transactions active at the time of
checkpoint.

• All updates are stopped while doing checkpointing

Checkpoints (Cont.)
• During recovery we need to consider only the most

recent transaction Ti that started before the
checkpoint, and transactions that started after Ti.
1. Scan backwards from end of log to find the most recent

<checkpoint L> record
• Only transactions that are in L or started after the

checkpoint need to be redone or undone
• Transactions that committed or aborted before the

checkpoint already have all their updates output to stable
storage.

• Some earlier part of the log may be needed for undo
operations
1. Continue scanning backwards till a record <Ti start> is

found for every transaction Ti in L.
• Parts of log prior to earliest <Ti start> record above are not

needed for recovery, and can be erased whenever desired.

Example of Checkpoints

• T1 can be ignored (updates already output to disk due to
checkpoint)

• T2 and T3 redone.
• T4 undone

Tc
Tf

T1

T2

T3

T4

checkpoint system failure

Recovery Algorithm
 So far: we covered key concepts

 Now: we present the components of the basic recovery
algorithm

 Later: we present extensions to allow more concurrency

Recovery Algorithm
• Logging (during normal operation):

• <Ti start> at transaction start

• <Ti, Xj, V1, V2> for each update, and

• <Ti commit> at transaction end

• Transaction rollback (during normal operation)
• Let Ti be the transaction to be rolled back

• Scan log backwards from the end, and for each log
record of Ti of the form <Ti, Xj, V1, V2>
• perform the undo by writing V1 to Xj,

• write a log record <Ti , Xj, V1>
• such log records are called compensation log records

• Once the record <Ti start> is found stop the scan and
write the log record <Ti abort>

Recovery Algorithm (Cont.)

• Recovery from failure: Two phases
• Redo phase: replay updates of all transactions, whether they committed,

aborted, or are incomplete

• Undo phase: undo all incomplete transactions

• Redo phase:
1. Find last <checkpoint L> record, and set undo-list to L.

2. Scan forward from above <checkpoint L> record
1. Whenever a record <Ti, Xj, V1, V2> or <Ti, Xj, V2> is found, redo it by writing V2 to Xj

2. Whenever a log record <Ti start> is found, add Ti to undo-list

3. Whenever a log record <Ti commit> or <Ti abort> is found, remove Ti from undo-list

Recovery Algorithm (Cont.)

• Undo phase:
1. Scan log backwards from end

1. Whenever a log record <Ti, Xj, V1, V2> is found where Ti is in undo-list perform same
actions as for transaction rollback:
1. perform undo by writing V1 to Xj.

2. write a log record <Ti , Xj, V1>

2. Whenever a log record <Ti start> is found where Ti is in undo-list,
1. Write a log record <Ti abort>

2. Remove Ti from undo-list

3. Stop when undo-list is empty
 i.e. <Ti start> has been found for every transaction in undo-list

After undo phase completes, normal transaction processing can
commence

Example of Recovery

Log Record Buffering
• Log record buffering: log records are buffered in

main memory, instead of of being output directly to
stable storage.
• Log records are output to stable storage when a block of

log records in the buffer is full, or a log force operation is
executed.

• Log force is performed to commit a transaction by
forcing all its log records (including the commit
record) to stable storage.

• Several log records can thus be output using a single
output operation, reducing the I/O cost.

Log Record Buffering (Cont.)

• The rules below must be followed if log records are buffered:
• Log records are output to stable storage in the order in which they are

created.

• Transaction Ti enters the commit state only when the log record
<Ti commit> has been output to stable storage.

• Before a block of data in main memory is output to the database, all log
records pertaining to data in that block must have been output to stable
storage.
• This rule is called the write-ahead logging or WAL rule

• Strictly speaking WAL only requires undo information to be output

Database Buffering
• Database maintains an in-memory buffer of data blocks

• When a new block is needed, if buffer is full an existing block
needs to be removed from buffer

• If the block chosen for removal has been updated, it must be
output to disk

• The recovery algorithm supports the no-force policy:
i.e., updated blocks need not be written to disk when
transaction commits
• force policy: requires updated blocks to be written at commit

• More expensive commit

• The recovery algorithm supports the steal policy:i.e.,
blocks containing updates of uncommitted transactions
can be written to disk, even before the transaction
commits

Database Buffering (Cont.)

• If a block with uncommitted updates is output to disk,
log records with undo information for the updates are
output to the log on stable storage first
• (Write ahead logging)

• No updates should be in progress on a block when it is
output to disk. Can be ensured as follows.
• Before writing a data item, transaction acquires exclusive

lock on block containing the data item
• Lock can be released once the write is completed.

• Such locks held for short duration are called latches.

• To output a block to disk
1. First acquire an exclusive latch on the block

1. Ensures no update can be in progress on the block
2. Then perform a log flush
3. Then output the block to disk
4. Finally release the latch on the block

Buffer Management (Cont.)
• Database buffer can be implemented either

• in an area of real main-memory reserved for the
database, or

• in virtual memory

• Implementing buffer in reserved main-memory
has drawbacks:
• Memory is partitioned before-hand between database

buffer and applications, limiting flexibility.

• Needs may change, and although operating system
knows best how memory should be divided up at any
time, it cannot change the partitioning of memory.

Buffer Management (Cont.)
• Database buffers are generally implemented in virtual

memory in spite of some drawbacks:
• When operating system needs to evict a page that has been

modified, the page is written to swap space on disk.
• When database decides to write buffer page to disk, buffer

page may be in swap space, and may have to be read from
swap space on disk and output to the database on disk,
resulting in extra I/O!
• Known as dual paging problem.

• Ideally when OS needs to evict a page from the buffer, it
should pass control to database, which in turn should
1. Output the page to database instead of to swap space (making

sure to output log records first), if it is modified
2. Release the page from the buffer, for the OS to use
Dual paging can thus be avoided, but common operating systems do

not support such functionality.

Remote Backup Systems

• Remote backup systems provide high availability by
allowing transaction processing to continue even if the
primary site is destroyed.

Remote Backup Systems (Cont.)

• Detection of failure: Backup site must detect when
primary site has failed
• to distinguish primary site failure from link failure maintain

several communication links between the primary and the
remote backup.

• Heart-beat messages

• Transfer of control:
• To take over control backup site first perform recovery using

its copy of the database and all the long records it has
received from the primary.
• Thus, completed transactions are redone and incomplete

transactions are rolled back.

• When the backup site takes over processing it becomes the
new primary

• To transfer control back to old primary when it recovers, old
primary must receive redo logs from the old backup and
apply all updates locally.

Remote Backup Systems (Cont.)

• Time to recover: To reduce delay in takeover, backup
site periodically proceses the redo log records (in
effect, performing recovery from previous database
state), performs a checkpoint, and can then delete
earlier parts of the log.

• Hot-Spare configuration permits very fast takeover:
• Backup continually processes redo log record as they arrive,

applying the updates locally.
• When failure of the primary is detected the backup rolls back

incomplete transactions, and is ready to process new
transactions.

• Alternative to remote backup: distributed database
with replicated data
• Remote backup is faster and cheaper, but less tolerant to

failure
• more on this in Chapter 19

Remote Backup Systems (Cont.)

• Ensure durability of updates by delaying transaction
commit until update is logged at backup; avoid this delay
by permitting lower degrees of durability.

• One-safe: commit as soon as transaction’s commit log
record is written at primary
• Problem: updates may not arrive at backup before it takes over.

• Two-very-safe: commit when transaction’s commit log
record is written at primary and backup
• Reduces availability since transactions cannot commit if either

site fails.

• Two-safe: proceed as in two-very-safe if both primary
and backup are active. If only the primary is active, the
transaction commits as soon as is commit log record is
written at the primary.
• Better availability than two-very-safe; avoids problem of lost

transactions in one-safe.

