




Shadow Paging
• Shadow paging is an alternative to log-based recovery; this 

scheme is useful if  transactions execute serially

• Idea: maintain two page tables during the lifetime of a 
transaction –the current page table, and the shadow page 
table

• Store the shadow page table in nonvolatile storage, such that 
state of the database prior to transaction execution may be 
recovered. 
• Shadow page table is never modified during execution

• To start with, both the page tables are identical. Only current 
page table is used for data item accesses during execution of 
the transaction.

• Whenever any page is about to be written for the first time
• A copy of this page is made onto an unused page. 
• The current page table is then made to point to the copy
• The update is performed on the copy



Sample Page Table



Example of Shadow Paging
Shadow and current page tables after write to page 4 



Shadow Paging (Cont.)
• To commit a transaction :

1.  Flush all modified pages in main memory to disk

2.  Output current page table to disk

3.  Make the current page table the new shadow page table, 
as follows:
• keep a pointer to the shadow page table at a fixed (known) location 

on disk.
• to make the current page table the new shadow page table, simply 

update the pointer to point to current page table on disk

• Once pointer to shadow page table has been written, 
transaction is committed.

• No recovery is needed after a crash — new transactions can 
start right away, using the shadow page table.

• Pages not pointed to from current/shadow page table 
should be freed (garbage collected).



Show Paging (Cont.)
• Advantages of shadow-paging over log-based schemes

• no overhead of writing log records
• recovery is trivial

• Disadvantages :
• Copying the entire page table is very expensive

• Can be reduced by using a page table structured like a B+-tree
• No need to copy entire tree, only need to copy paths in the tree that lead to updated leaf nodes

• Commit overhead is high even with above extension
• Need to flush every updated page, and page table

• Data gets fragmented (related pages get separated on disk)
• After every transaction completion, the database pages 

containing old versions of modified data need to be garbage 
collected 

• Hard to extend algorithm to allow transactions to run 
concurrently
• Easier to extend log based schemes



Block Storage Operations



Indexing and Hashing



Basic Concepts
• Indexing mechanisms used to speed up access to 

desired data.
• E.g., author catalog in library

• Search Key - attribute to set of attributes used to look 
up records in a file.

• An index file consists of records (called index entries) 
of the form

• Index files are typically much smaller than the original 
file 

• Two basic kinds of indices:
• Ordered indices:  search keys are stored in sorted order
• Hash indices: search keys are distributed uniformly across 

“buckets” using a “hash function”. 

search-key pointer



Index Evaluation Metrics

• Access types supported efficiently.  E.g., 
• records with a specified value in the attribute

• or records with an attribute value falling in a specified range of values.

• Access time

• Insertion time

• Deletion time

• Space overhead



Ordered Indices
• In an ordered index, index entries are stored sorted on 

the search key value.  E.g., author catalog in library.
• Primary index: in a sequentially ordered file, the index 

whose search key specifies the sequential order of the 
file.
• Also called clustering index
• The search key of a primary index is usually but not 

necessarily the primary key.

• Secondary index: an index whose search key specifies 
an order different from the sequential order of the file.  
Also called 
non-clustering index.

• Index-sequential file: ordered sequential file with a 
primary index.



Dense Index Files
• Dense index — Index record appears for every search-key value in the 

file. 

• E.g. index on ID attribute of instructor relation 



Dense Index Files (Cont.)
• Dense index on dept_name, with instructor file sorted on dept_name



Sparse Index Files
• Sparse Index:  contains index records for only some 

search-key values.
• Applicable when records are sequentially ordered on 

search-key

• To locate a record with search-key value K we:
• Find index record with largest search-key value < K
• Search file sequentially starting at the record to which the 

index record points



Sparse Index Files (Cont.)

• Compared to dense indices:
• Less space and less maintenance overhead for insertions and deletions.

• Generally slower than dense index for locating records.

• Good tradeoff: sparse index with an index entry for every block in file, 
corresponding to least search-key value in the block.



Secondary Indices Example

• Index record points to a bucket that contains pointers to all the actual 
records with that particular search-key value.

• Secondary indices have to be dense

Secondary index on salary field of instructor



Primary and Secondary Indices

• Indices offer substantial benefits when searching for records.

• BUT: Updating indices imposes overhead on database modification --
when a file is modified, every index on the file must be updated, 

• Sequential scan using primary index is efficient, but a sequential scan 
using a secondary index is expensive 

• Each record access may fetch a new block from disk

• Block fetch requires about 5 to 10 milliseconds, versus about 100 
nanoseconds for memory access



Multilevel Index

• If primary index does not fit in memory, access becomes expensive.

• Solution: treat primary index kept on disk as a sequential file and 
construct a sparse index on it.

• outer index – a sparse index of primary index

• inner index – the primary index file

• If even outer index is too large to fit in main memory, yet another 
level of index can be created, and so on.

• Indices at all levels must be updated on insertion or deletion from the 
file.



Multilevel Index (Cont.)



Index Update:  Deletion

• Single-level index entry deletion:

• Dense indices – deletion of search-key is similar to file record 
deletion.

• Sparse indices –

• if an entry for the search key exists in the index, it is deleted by 
replacing the entry in the index with the next search-key value 
in the file (in search-key order).  

• If the next search-key value already has an index entry, the entry 
is deleted instead of being replaced.

 If deleted record was the 

only record in the file with its 

particular search-key value, 

the search-key is deleted 

from the index also.



Index Update:  Insertion
• Single-level index insertion:

• Perform a lookup using the search-key value appearing in the 
record to be inserted.

• Dense indices – if the search-key value does not appear in the 
index, insert it.

• Sparse indices – if index stores an entry for each block of the file, 
no change needs to be made to the index unless a new block is 
created.  

• If a new block is created, the first search-key value appearing 
in the new block is inserted into the index.

• Multilevel insertion and deletion: algorithms are simple extensions 
of the single-level algorithms



Secondary Indices
• Frequently, one wants to find all the records whose values in a 

certain field (which is not the search-key of the primary index) 
satisfy some condition.

• Example 1: In the instructor relation stored sequentially by ID, 
we may want to find all instructors in a particular department

• Example 2: as above, but where we want to find all instructors 
with a specified salary or with salary in a specified range of 
values

• We can have a secondary index with an index record for each 
search-key value



B+-Tree Index Files

• Disadvantage of indexed-sequential files
• performance degrades as file grows, since many overflow blocks 

get created.  
• Periodic reorganization of entire file is required.

• Advantage of B+-tree index files:  
• automatically reorganizes itself with small, local, changes, in the 

face of insertions and deletions.  
• Reorganization of entire file is not required to maintain 

performance.

• (Minor) disadvantage of B+-trees: 
• extra insertion and deletion overhead, space overhead.

• Advantages of B+-trees outweigh disadvantages
• B+-trees are used extensively

B+-tree indices are an alternative to indexed-sequential files.



Example of B+-Tree



B+-Tree Index Files (Cont.)

• All paths from root to leaf are of the same length

• Each node that is not a root or a leaf has between n/2 and n
children.

• A leaf node has between (n–1)/2 and n–1 values

• Special cases: 

• If the root is not a leaf, it has at least 2 children.

• If the root is a leaf (that is, there are no other nodes in the 
tree), it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:



B+-Tree Node Structure

• Typical node

• Ki are the search-key values 

• Pi are pointers to children (for non-leaf nodes) or pointers to records or buckets of records 
(for leaf nodes).

• The search-keys in a node are ordered 

K1 < K2 < K3 < . . . < Kn–1

(Initially assume no duplicate keys, address duplicates later)



Leaf Nodes in B+-Trees
• For i = 1, 2, . . ., n–1, pointer Pi points to a file record with search-key 

value Ki, 

• If Li, Lj are leaf nodes and i < j, Li’s search-key values are less than or 
equal to Lj’s search-key values

• Pn points to next leaf node in search-key order

Properties of a leaf node:



Non-Leaf Nodes in B+-Trees

• Non leaf nodes form a multi-level sparse index on the leaf nodes.  For a non-leaf node with m
pointers:

• All the search-keys in the subtree to which P1 points are less than K1 

• For 2  i  n – 1, all the search-keys in the subtree to which Pi points have values greater than 
or equal to Ki–1 and less than Ki 

• All the search-keys in the subtree to which Pn points have values greater than or equal to Kn–1



Example of B+-tree

• Leaf nodes must have between 3 and 5 values 
((n–1)/2 and n –1, with n = 6).

• Non-leaf nodes other than root must have between 3 and 6 
children ((n/2 and n with n =6).

• Root must have at least 2 children.

B+-tree for instructor file (n = 6)



Observations about B+-trees

• Since the inter-node connections are done by pointers, “logically” close blocks need not be 
“physically” close.

• The non-leaf levels of the B+-tree form a hierarchy of sparse indices.

• The B+-tree contains a relatively small number of levels

• Level below root has at least 2* n/2 values

• Next level has at least 2* n/2 * n/2 values

• .. etc.

• If there are K search-key values in the file, the tree height is no more than  logn/2(K)

• thus searches can be conducted efficiently.

• Insertions and deletions to the main file can be handled efficiently, as the index can be 
restructured in logarithmic time (as we shall see).



B+-Tree  Insertion

B+-Tree before and after insertion of “Adams”



B+-Tree  Insertion

B+-Tree before and after insertion of “Lamport”



Insertion in B+-Trees (Cont.)

• Splitting a non-leaf node: when inserting (k,p) into an already full 
internal node N
• Copy N to an in-memory area M with space for n+1 pointers and n keys

• Insert (k,p) into M

• Copy P1,K1, …, K n/2-1,P n/2 from M back into node N

• Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated node N’

• Insert (K n/2,N’) into parent N

• Read pseudocode in book!

CrickAdams  Brandt  Califieri  Crick Adams Brandt

Califieri



Examples of B+-Tree Deletion

• Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”



Examples of B+-Tree Deletion (Cont.)

Deletion of “Singh” and “Wu” from result of previous example

 Leaf containing Singh and Wu became underfull, and borrowed a value 

Kim from its left sibling

 Search-key value in the parent changes as a result



Example of B+-tree Deletion (Cont.)

Before and after deletion of “Gold” from earlier example

 Node with Gold and Katz became underfull, and was merged with its sibling 

 Parent node becomes underfull, and is merged with its sibling

 Value separating two nodes (at the parent) is pulled down when merging

 Root node then has only one child, and is deleted



Updates on B+-Trees: Deletion
• Find the record to be deleted, and remove it from the 

main file and from the bucket (if present)
• Remove (search-key value, pointer) from the leaf node 

if there is no bucket or if the bucket has become 
empty

• If the node has too few entries due to the removal, 
and the entries in the node and a sibling fit into a 
single node, then merge siblings:
• Insert all the search-key values in the two nodes into a 

single node (the one on the left), and delete the other node.
• Delete the pair (Ki–1, Pi), where Pi is the pointer to the 

deleted node, from its parent, recursively using the above 
procedure.



Updates on B+-Trees:  Deletion

• Otherwise, if the node has too few entries due to the removal, but 
the entries in the node and a sibling do not fit into a single node, then 
redistribute pointers:
• Redistribute the pointers between the node and a sibling such that both have 

more than the minimum number of entries.

• Update the corresponding search-key value in the parent of the node.

• The node deletions may cascade upwards till a node which has  n/2
or more pointers is found.  

• If the root node has only one pointer after deletion, it is deleted and 
the sole child becomes the root. 



Non-Unique Search Keys

• Alternatives to scheme described earlier

• Buckets on separate block (bad idea)

• List of tuple pointers with each key

• Extra code to handle long lists

• Deletion of a tuple can be expensive if there are many 
duplicates on search key (why?)

• Low space overhead, no extra cost for queries

• Make search key unique by adding a record-identifier

• Extra storage overhead for keys

• Simpler code for insertion/deletion

• Widely used



B+-Tree File Organization
• Index file degradation problem is solved by using B+-

Tree indices.
• Data file degradation problem is solved by using B+-

Tree File Organization.
• The leaf nodes in a B+-tree file organization store 

records, instead of pointers.
• Leaf nodes are still required to be half full

• Since records are larger than pointers, the maximum 
number of records that can be stored in a leaf node is less 
than the number of pointers in a nonleaf node.

• Insertion and deletion are handled in the same way as 
insertion and deletion of entries in a B+-tree index.



B+-Tree File Organization (Cont.)

• Good space utilization important since records use more 
space than pointers.  

• To improve space utilization, involve more sibling nodes in 
redistribution during splits and merges
• Involving 2 siblings in redistribution (to avoid split / merge where 

possible) results in each node having at least     entries

Example of B+-tree File Organization

 3/2n



B-Tree Index Files

• Nonleaf node – pointers Bi are the bucket or file record 
pointers.

 Similar to B+-tree, but B-tree allows search-key values to 

appear only once; eliminates redundant storage of search 

keys.

 Search keys in nonleaf nodes appear nowhere else in the B-

tree; an additional pointer field for each search key in a 

nonleaf node must be included.

 Generalized B-tree leaf node



B-Tree Index File Example

B-tree (above) and B+-tree (below) on same data



B-Tree Index Files (Cont.)
• Advantages of B-Tree indices:

• May use less tree nodes than a corresponding B+-Tree.
• Sometimes possible to find search-key value before reaching 

leaf node.

• Disadvantages of B-Tree indices:
• Only small fraction of all search-key values are found early 
• Non-leaf nodes are larger, so fan-out is reduced.  Thus, B-Trees 

typically have greater depth than corresponding B+-Tree
• Insertion and deletion more complicated than in B+-Trees 
• Implementation is harder than B+-Trees.

• Typically, advantages of B-Trees do not out weigh 
disadvantages. 



Static Hashing
• A bucket is a unit of storage containing one or more 

records (a bucket is typically a disk block). 

• In a hash file organization we obtain the bucket of a 
record directly from its search-key value using a hash
function.

• Hash function h is a function from the set of all search-
key values K to the set of all bucket addresses B.

• Hash function is used to locate records for access, 
insertion as well as deletion.

• Records with different search-key values may be 
mapped to the same bucket; thus entire bucket has to 
be searched sequentially to locate a record. 



Example of Hash File Organization

• There are 10 buckets,

• The binary representation of the ith character is 
assumed to be the integer i.

• The hash function returns the sum of the binary 
representations of the characters modulo 10
• E.g. h(Music) = 1        h(History) = 2   

h(Physics) =  3   h(Elec. Eng.) = 3

Hash file organization of instructor file, using dept_name as key

(See figure in next slide.)



Example of Hash File Organization 

Hash file organization of instructor file, using dept_name as key 

(see previous slide for details).



Hash Functions
• Worst hash function maps all search-key values to the 

same bucket; this makes access time proportional to 
the number of search-key values in the file.

• An ideal hash function is uniform, i.e., each bucket is 
assigned the same number of search-key values from 
the set of all possible values.

• Ideal hash function is random, so each bucket will 
have the same number of records assigned to it 
irrespective of the actual distribution of search-key 
values in the file.

• Typical hash functions perform computation on the 
internal binary representation of the search-key. 
• For example, for a string search-key, the binary 

representations of all the characters in the string could be 
added and the sum modulo the number of buckets could be 
returned. .



Handling of Bucket Overflows
• Bucket overflow can occur because of 

• Insufficient buckets 

• Skew in distribution of records.  This can occur due to 
two reasons:
• multiple records have same search-key value

• chosen hash function produces non-uniform distribution of 
key values

• Although the probability of bucket overflow can 
be reduced, it cannot be eliminated; it is handled 
by using overflow buckets.



Handling of Bucket Overflows (Cont.)

• Overflow chaining – the overflow buckets of a 
given bucket are chained together in a linked list.

• Above scheme is called closed hashing.
• An alternative, called open hashing, which does not use 

overflow buckets,  is not suitable for database 
applications.



Hash Indices

• Hashing can be used not only for file organization, but also for index-
structure creation.  

• A hash index organizes the search keys, with their associated record 
pointers, into a hash file structure.

• Strictly speaking, hash indices are always secondary indices 
• if the file itself is organized using hashing, a separate primary hash index on it 

using the same search-key is unnecessary.  

• However, we use the term hash index to refer to both secondary index 
structures and hash organized files. 



Example of Hash Index

hash index on instructor, on attribute ID



Deficiencies of Static Hashing
• In static hashing, function h maps search-key values to 

a fixed set of B of bucket addresses. Databases grow or 
shrink with time. 
• If initial number of buckets is too small, and file grows, 

performance will degrade due to too much overflows.
• If space is allocated for anticipated growth, a significant 

amount of space will be wasted initially (and buckets will be 
underfull).

• If database shrinks, again space will be wasted.

• One solution: periodic re-organization of the file with a 
new hash function
• Expensive, disrupts normal operations

• Better solution: allow the number of buckets to be 
modified dynamically. 



Dynamic Hashing
• Good for database that grows and shrinks in size

• Allows the hash function to be modified dynamically

• Extendable hashing – one form of dynamic hashing 
• Hash function generates values over a large range —

typically b-bit integers, with b = 32.
• At any time use only a prefix of the hash function to index 

into a table of bucket addresses.   
• Let the length of the prefix be i bits,  0  i  32.  

• Bucket address table size = 2i. Initially i = 0

• Value of i grows and shrinks as the size of the database grows and 
shrinks.

• Multiple entries in the bucket address table may point to a 
bucket (why?)

• Thus, actual number of buckets is < 2i

• The number of buckets also changes dynamically due to 
coalescing and splitting of buckets. 



General Extendable Hash Structure 

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see next 

slide for details)


