
Estimation of the Size of Joins
• The Cartesian product r x s contains nr .ns tuples;

each tuple occupies sr + ss bytes.
• If R  S = , then r s is the same as r x s.
• If R  S is a key for R, then a tuple of s will join with at

most one tuple from r
• therefore, the number of tuples in r s is no greater than

the number of tuples in s.

• If R  S in S is a foreign key in S referencing R, then
the number of tuples in r s is exactly the same as
the number of tuples in s.

• The case for R  S being a foreign key referencing S is
symmetric.

• In the example query student takes, ID in takes is a
foreign key referencing student
• hence, the result has exactly ntakes tuples, which is 10000

Estimation of the Size of Joins (Cont.)

• If R  S = {A} is not a key for R or S.
If we assume that every tuple t in R produces tuples in R S, the number of
tuples in R S is estimated to be:

If the reverse is true, the estimate obtained will be:

The lower of these two estimates is probably the more accurate one.
• Can improve on above if histograms are available

• Use formula similar to above, for each cell of histograms on the two relations

),(sAV

nn sr *

),(rAV

nn sr *

Estimation of the Size of Joins (Cont.)

• Compute the size estimates for depositor customer without using
information about foreign keys:
• V(ID, takes) = 2500, and

V(ID, student) = 5000

• The two estimates are 5000 * 10000/2500 = 20,000 and 5000 * 10000/5000 =
10000

• We choose the lower estimate, which in this case, is the same as our earlier
computation using foreign keys.

Size Estimation for Other Operations

• Projection: estimated size of A(r) = V(A,r)

• Aggregation : estimated size of AgF(r) = V(A,r)

• Set operations
• For unions/intersections of selections on the same relation: rewrite and use

size estimate for selections
• E.g. 1 (r)  2 (r) can be rewritten as 1 ˅ 2 (r)

• For operations on different relations:
• estimated size of r  s = size of r + size of s.

• estimated size of r  s = minimum size of r and size of s.

• estimated size of r – s = r.

• All the three estimates may be quite inaccurate, but provide upper bounds on the sizes.

Size Estimation (Cont.)

• Outer join:
• Estimated size of r s = size of r s + size of r

• Case of right outer join is symmetric

• Estimated size of r s = size of r s + size of r + size of s

Estimation of Number of Distinct
Values
Selections:  (r)

• If  forces A to take a specified value: V(A, (r)) = 1.
• e.g., A = 3

• If  forces A to take on one of a specified set of
values:

V(A, (r)) = number of specified values.
• (e.g., (A = 1 V A = 3 V A = 4)),

• If the selection condition  is of the form A op r
estimated V(A, (r)) = V(A.r) * s
• where s is the selectivity of the selection.

• In all the other cases: use approximate estimate of
min(V(A,r), n (r))

• More accurate estimate can be got using probability
theory, but this one works fine generally

Estimation of Distinct Values (Cont.)

Joins: r s

• If all attributes in A are from r
estimated V(A, r s) = min (V(A,r), n r s)

• If A contains attributes A1 from r and A2 from s, then estimated
V(A,r s) =

min(V(A1,r)*V(A2 – A1,s), V(A1 – A2,r)*V(A2,s), nr s)
• More accurate estimate can be got using probability theory, but this one

works fine generally

Estimation of Distinct Values (Cont.)
• Estimation of distinct values are straightforward for

projections.
• They are the same in A (r) as in r.

• The same holds for grouping attributes of
aggregation.

• For aggregated values
• For min(A) and max(A), the number of distinct values can

be estimated as min(V(A,r), V(G,r)) where G denotes
grouping attributes

• For other aggregates, assume all values are distinct, and
use V(G,r)

Materialized Views**

• A materialized view is a view whose contents are computed and
stored.

• Consider the view
create view department_total_salary(dept_name, total_salary) as
select dept_name, sum(salary)
from instructor
group by dept_name

• Materializing the above view would be very useful if the total salary
by department is required frequently
• Saves the effort of finding multiple tuples and adding up their amounts

Materialized View Maintenance

• The task of keeping a materialized view up-to-date with the underlying
data is known as materialized view maintenance

• Materialized views can be maintained by recomputation on every update
• A better option is to use incremental view maintenance

• Changes to database relations are used to compute changes to the materialized
view, which is then updated

• View maintenance can be done by
• Manually defining triggers on insert, delete, and update of each relation in the view

definition
• Manually written code to update the view whenever database relations are updated
• Periodic recomputation (e.g. nightly)
• Above methods are directly supported by many database systems

• Avoids manual effort/correctness issues

Incremental View Maintenance

• The changes (inserts and deletes) to a relation or expressions are
referred to as its differential
• Set of tuples inserted to and deleted from r are denoted ir and dr

• To simplify our description, we only consider inserts and deletes
• We replace updates to a tuple by deletion of the tuple followed by insertion

of the update tuple

• We describe how to compute the change to the result of each
relational operation, given changes to its inputs

• We then outline how to handle relational algebra expressions

Materialized View Selection

• Materialized view selection: “What is the best set of views to materialize?”.

• Index selection: “what is the best set of indices to create”
• closely related, to materialized view selection

• but simpler

• Materialized view selection and index selection based on typical system workload
(queries and updates)
• Typical goal: minimize time to execute workload , subject to constraints on space and time

taken for some critical queries/updates
• One of the steps in database tuning

• more on tuning in later chapters

• Commercial database systems provide tools (called “tuning assistants” or
“wizards”) to help the database administrator choose what indices and
materialized views to create

q

E1 E2

q

E2 E1

Rule 5

E3

E1 E2 E2 E3

E1

Rule 6.a

Rule 7.a

If only has
attributes from E1

E1 E2 E1

E2

s
q

sq

q

