Estimatign of the Size of Joins

e Cartesian product r x s contains n,.n, tuples;
each tuple occupies s, + s, bytes.

s IfRNS=C,thenr sisthesameasr xs.

* If RN Sis a key for R, then a tuple of s will join with at
most one tuple from r

e therefore, the number of tuplesid r s is no greater than
the number of tuples in s.

* [fRMNSinSis aforeign key in S referencing R, then
the number of tuplesinr s is exactly the same as
the number of tuplesin s.

* The case for R ™ S being a foreign key referencing S is
symmetric.

e In the example query stifdent takes, ID in takes is a
foreign key referencing student

* hence, the result has exactly n, .. tuples, which is 10000

Estimation of the Size of Joins (Cont.)

X

e [fRNS={A}isnota keyfor%rs.
If we assume that every tupkestnn R produces tuplesin R S, the number of
tuplesin R Sis estimated {pA8:

n.*n

If the reverse is true, the es%jaf)e obtained will be:

The lower of these two estimates is probably the more accurate one.

e Can improve on above if histograms are available
* Use formula similar to above, for each cell of histograms on the two relations

Estimation of the Size of Joins (Cont.)

X

 Compute the size estimates for depositor customer without using
information about foreign keys:
* V(ID, takes) = 2500, and
V(ID, student) = 5000

* The two estimates are 5000 * 10000/2500 = 20,000 and 5000 * 10000/5000 =
10000

* We choose the lower estimate, which in this case, is the same as our earlier
computation using foreign keys.

Size Estimation for Other Operations

* Projection: estimated size of [1,(r) = VI(A,r)
* Aggregation : estimated size of ,g.(r) = V(A,r)

* Set operations

* For unions/intersections of selections on the same relation: rewrite and use
size estimate for selections

* E.g. Gy, (r) U oy, (r) can be rewritten as 64, v g, (1)

* For operations on different relations:
* estimated size of r U s =size of r + size of s.
* estimated size of r s = minimum size of r and size of s.
* estimated sizeofr—s =r.
* All the three estimates may be guite inaccurate, but provide upper bounds on the sizes.

Size Estimation (Cont.)

X X
* Quter join:
* Estimated sizeofr s =sizéd8f r s +siz&ofr
* Case of right outer join is symmetric
e Estimated size of r s =sizeofr s+sizeofr+sizeofs

cSTIMaAation orf Numper OT DISTINCT
Values

Selections: 6,4 (r)

* If O forces A to take a specified value: V(A,c4(r)) = 1.
* eg,A=3

e |f O forces A to take on one of a specified set of
values:
V(A,c,4(r)) = number of specified values.
* (eg,(A=1VA=3VA=4)),
* |f the selection condition O is of the form Aop r
estimated V(A,G,(r)) = V(A.r) * s

* where s is the selectivity of the selection.

* |[n all the other cases: use approximate estimate of
min(V(A,r), N)

* More accurate estimate can be got using probability
theory, but this one works fine generally

Estimationmof Distinct Values (Cont.)
Joins:r s a X

e |f all attributes id A are from r
estimated V(A, r s)=min (V(A,r),n,) y
 |f A contains attributes A1 from r and A2 from s, then estimated
V(A,r s)=
min(V(Al1,r)*V(A2 — Al,s), V(A1 — A2,r)*V(A2,s), n.)

* More accurate estimate can be got using probability theory, but this one
works fine generally

Estimation of Distinct Values (Cont.)

e Estimation of distinct values are straightforward for
projections.

* They are the samein [, asinr.

* The same holds for grouping attributes of
aggregation.

* For aggregated values

* For min(A) and max(A), the number of distinct values can
be estimated as min(V(A,r), V(G,r)) where G denotes
grouping attributes

* For other aggregates, assume all values are distinct, and
use V(G,r)

Materialized Views™**

* A materialized view is a view whose contents are computed and
stored.

* Consider the view
create view department _total salary(dept_name, total salary) as
select dept_name, sum(salary)
from instructor
group by dept _name

* Materializing the above view would be very useful if the total salary
by department is required frequently
» Saves the effort of finding multiple tuples and adding up their amounts

Materialized View Maintenance

* The task of keeping a materialized view up-to-date with the underlying
data is known as materialized view maintenance

* Materialized views can be maintained by recomputation on every update

* A better option is to use incremental view maintenance

* Changes to database relations are used to compute changes to the materialized
view, which is then updated

* View maintenance can be done by
. (I;/I?cnually defining triggers on insert, delete, and update of each relation in the view
efinition
 Manually written code to update the view whenever database relations are updated
* Periodic recomputation (e.g. nightly)

* Above methods are directly supported by many database systems
* Avoids manual effort/correctness issues

Incremental View Maintenance

* The changes (inserts and deletes) to a relation or expressions are
referred to as its differential

* Set of tuples inserted to and deleted from r are denoted i, and d,

* To simplify our description, we only consider inserts and deletes

* We replace updates to a tuple by deletion of the tuple followed by insertion
of the update tuple

* We describe how to compute the change to the result of each
relational operation, given changes to its inputs

* We then outline how to handle relational algebra expressions

Materialized View Selection

Materialized view selection: “What is the best set of views to materialize?” .

Index selection: “what is the best set of indices to create”

* closely related, to materialized view selection
* butsimpler

Materialized view selection and index selection based on typical system workload
(queries and updates)

» Typical goal: minimize time to execute workload , subject to constraints on space and time
taken for some critical queries/updates

* One of the steps in database tuning
* more on tuning in later chapters

Commercial database systems provide tools (called “tuning assistants” or
wizards ') to help the database administrator choose what indices and
materialized views to create

I1

name, title

c . name, title
dept_name = Music

PN NG

instructor / N \ Tdept_name =M? N \
teaches instructor teaches I1

| course_id, title | course_id, title

course course

(a) Initial expression tree (b) Transformed expression tree

(sort to remove duplicates)
Il name, title

<] (merge join)

pipeline \)ipeline

sort,,
sort,, <] (hash join)
pipeline Nipeline
O dept — Musi d ti
ept_name = IVIusiC course_id, title

(use index 1)

imstructor teaches course

Rule 5

A

Rule 6.a

Y

A

Rule 7.a

Y

i
-

If g only has
attributes from E1

A -
 a

