Estimatign of the Size of Joins

e Cartesian product r x s contains n,.n, tuples;
each tuple occupies s, + s, bytes.

s IfRNS=C,thenr sisthesameasr xs.

* If RN Sis a key for R, then a tuple of s will join with at
most one tuple from r

e therefore, the number of tuplesid r s is no greater than
the number of tuples in s.

* [fRMNSinSis aforeign key in S referencing R, then
the number of tuplesinr s is exactly the same as
the number of tuplesin s.

* The case for R ™ S being a foreign key referencing S is
symmetric.

e In the example query stifdent takes, ID in takes is a
foreign key referencing student

* hence, the result has exactly n, .. tuples, which is 10000



Estimation of the Size of Joins (Cont.)

X

e [fRNS={A}isnota keyfor%rs.
If we assume that every tupkestnn R produces tuplesin R S, the number of
tuplesin R Sis estimated {pA8:

n.*n

If the reverse is true, the es%jaf)e obtained will be:

The lower of these two estimates is probably the more accurate one.

e Can improve on above if histograms are available
* Use formula similar to above, for each cell of histograms on the two relations



Estimation of the Size of Joins (Cont.)

X

 Compute the size estimates for depositor customer without using
information about foreign keys:
* V(ID, takes) = 2500, and
V(ID, student) = 5000

* The two estimates are 5000 * 10000/2500 = 20,000 and 5000 * 10000/5000 =
10000

* We choose the lower estimate, which in this case, is the same as our earlier
computation using foreign keys.



Size Estimation for Other Operations

* Projection: estimated size of [ 1,(r) = VI(A,r)
* Aggregation : estimated size of ,g.(r) = V(A,r)

* Set operations

* For unions/intersections of selections on the same relation: rewrite and use
size estimate for selections

* E.g. Gy, (r) U oy, (r) can be rewritten as 64, v g, (1)

* For operations on different relations:
* estimated size of r U s =size of r + size of s.
* estimated size of r s = minimum size of r and size of s.
* estimated sizeofr—s =r.
* All the three estimates may be guite inaccurate, but provide upper bounds on the sizes.




Size Estimation (Cont.)

X X
* Quter join:
* Estimated sizeofr s =sizéd8f r s +siz&ofr
* Case of right outer join is symmetric
e Estimated size of r s =sizeofr s+sizeofr+sizeofs



cSTIMaAation orf Numper OT DISTINCT
Values

Selections: 6,4 (r)

* If O forces A to take a specified value: V(A,c4(r)) = 1.
* eg,A=3

e |f O forces A to take on one of a specified set of
values:
V(A,c,4(r)) = number of specified values.
* (eg,(A=1VA=3VA=4)),
* |f the selection condition O is of the form Aop r
estimated V(A,G,(r)) = V(A.r) * s

* where s is the selectivity of the selection.

* |[n all the other cases: use approximate estimate of
min(V(A,r), N )

* More accurate estimate can be got using probability
theory, but this one works fine generally



Estimationmof Distinct Values (Cont.)
Joins:r s a X

e |f all attributes id A are from r
estimated V(A, r s)=min (V(A,r),n, ) y
 |f A contains attributes A1 from r and A2 from s, then estimated
V(A,r s)=
min(V(Al1,r)*V(A2 — Al,s), V(A1 — A2,r)*V(A2,s), n. )

* More accurate estimate can be got using probability theory, but this one
works fine generally



Estimation of Distinct Values (Cont.)

e Estimation of distinct values are straightforward for
projections.

* They are the samein [, asinr.

* The same holds for grouping attributes of
aggregation.

* For aggregated values

* For min(A) and max(A), the number of distinct values can
be estimated as min(V(A,r), V(G,r)) where G denotes
grouping attributes

* For other aggregates, assume all values are distinct, and
use V(G,r)



Materialized Views™**

* A materialized view is a view whose contents are computed and
stored.

* Consider the view
create view department _total salary(dept_name, total salary) as
select dept_name, sum(salary)
from instructor
group by dept _name

* Materializing the above view would be very useful if the total salary
by department is required frequently
» Saves the effort of finding multiple tuples and adding up their amounts



Materialized View Maintenance

* The task of keeping a materialized view up-to-date with the underlying
data is known as materialized view maintenance

* Materialized views can be maintained by recomputation on every update

* A better option is to use incremental view maintenance

* Changes to database relations are used to compute changes to the materialized
view, which is then updated

* View maintenance can be done by
. (I;/I?cnually defining triggers on insert, delete, and update of each relation in the view
efinition
 Manually written code to update the view whenever database relations are updated
* Periodic recomputation (e.g. nightly)

* Above methods are directly supported by many database systems
* Avoids manual effort/correctness issues



Incremental View Maintenance

* The changes (inserts and deletes) to a relation or expressions are
referred to as its differential

* Set of tuples inserted to and deleted from r are denoted i, and d,

* To simplify our description, we only consider inserts and deletes

* We replace updates to a tuple by deletion of the tuple followed by insertion
of the update tuple

* We describe how to compute the change to the result of each
relational operation, given changes to its inputs

* We then outline how to handle relational algebra expressions



Materialized View Selection

Materialized view selection: “What is the best set of views to materialize?” .

Index selection: “what is the best set of indices to create”

* closely related, to materialized view selection
* butsimpler

Materialized view selection and index selection based on typical system workload
(queries and updates)

» Typical goal: minimize time to execute workload , subject to constraints on space and time
taken for some critical queries/updates

* One of the steps in database tuning
* more on tuning in later chapters

Commercial database systems provide tools (called “tuning assistants” or
wizards ') to help the database administrator choose what indices and
materialized views to create
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