
Socket Communication

Remote Procedure Calls

• Remote procedure call (RPC) abstracts procedure calls between
processes on networked systems

• Stubs – client-side proxy for the actual procedure on the server

• The client-side stub locates the server and marshalls the parameters

• The server-side stub receives this message, unpacks the marshalled
parameters, and peforms the procedure on the server

Execution of RPC

Remote Method Invocation

• Remote Method Invocation (RMI) is a Java mechanism similar to RPCs

• RMI allows a Java program on one machine to invoke a method on a
remote object

Marshalling Parameters

Multithreaded Programming

Single and Multithreaded Processes

Benefits

• Responsiveness

• Resource Sharing

• Economy

• Scalability

Multicore Programming

• Multicore systems putting pressure on programmers, challenges
include
• Dividing activities

• Balance

• Data splitting

• Data dependency

• Testing and debugging

Multithreaded Server Architecture

Concurrent Execution on a Single-core System

Parallel Execution on a Multicore System

User Threads

• Thread management done by user-level threads library

• Three primary thread libraries:
• POSIX Pthreads

• Win32 threads

• Java threads

Kernel Threads

• Supported by the Kernel

• Examples
• Windows XP/2000

• Solaris

• Linux

• Tru64 UNIX

• Mac OS X

Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

Many-to-One

• Many user-level threads mapped to single kernel thread

• Examples:
• Solaris Green Threads

• GNU Portable Threads

Many-to-One Model

One-to-One

• Each user-level thread maps to kernel thread

• Examples
• Windows NT/XP/2000

• Linux

• Solaris 9 and later

One-to-one Model

Many-to-Many Model

• Allows many user level threads to be
mapped to many kernel threads

• Allows the operating system to create a
sufficient number of kernel threads

• Solaris prior to version 9

• Windows NT/2000 with the ThreadFiber
package

Many-to-Many Model

Two-level Model
• Similar to M:M, except that it allows a

user thread to be bound to kernel thread

• Examples
• IRIX

• HP-UX

• Tru64 UNIX

• Solaris 8 and earlier

Two-level Model

Thread Libraries

• Thread library provides programmer with API for creating and
managing threads

• Two primary ways of implementing
• Library entirely in user space

• Kernel-level library supported by the OS

Pthreads
• May be provided either as user-level or

kernel-level

• A POSIX standard (IEEE 1003.1c) API for
thread creation and synchronization

• API specifies behavior of the thread library,
implementation is up to development of
the library

• Common in UNIX operating systems
(Solaris, Linux, Mac OS X)

Java Threads
• Java threads are managed by the JVM

• Typically implemented using the threads model provided
by underlying OS

• Java threads may be created by:

• Extending Thread class
• Implementing the Runnable interface

Threading Issues
• Semantics of fork() and exec() system calls

• Thread cancellation of target thread
• Asynchronous or deferred

• Signal handling

• Thread pools

• Thread-specific data

• Scheduler activations

Semantics of fork() and exec()

• Does fork() duplicate only the calling thread or all threads?

Thread Cancellation
• Terminating a thread before it has finished

• Two general approaches:
• Asynchronous cancellation terminates the

target thread immediately

• Deferred cancellation allows the target thread
to periodically check if it should be cancelled

Signal Handling
• Signals are used in UNIX systems to notify a

process that a particular event has occurred
• A signal handler is used to process signals

1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

• Options:
• Deliver the signal to the thread to which the signal

applies
• Deliver the signal to every thread in the process
• Deliver the signal to certain threads in the process
• Assign a specific threa to receive all signals for the

process

Thread Pools
• Create a number of threads in a pool where they

await work

• Advantages:
• Usually slightly faster to service a request with an

existing thread than create a new thread

• Allows the number of threads in the application(s) to
be bound to the size of the pool

Thread Specific Data
• Allows each thread to have its own copy of

data

• Useful when you do not have control over the
thread creation process (i.e., when using a
thread pool)

Process Scheduling

Basic Concepts
• Maximum CPU utilization obtained with

multiprogramming

• CPU–I/O Burst Cycle – Process execution
consists of a cycle of CPU execution and I/O
wait

• CPU burst distribution

Histogram of CPU-burst Times

Alternating Sequence of CPU And I/O Bursts

CPU Scheduler

• Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them

• CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

• Scheduling under 1 and 4 is nonpreemptive

• All other scheduling is preemptive

Dispatcher
• Dispatcher module gives control of the CPU to

the process selected by the short-term
scheduler; this involves:
• switching context

• switching to user mode

• jumping to the proper location in the user program
to restart that program

• Dispatch latency – time it takes for the
dispatcher to stop one process and start
another running

Scheduling Criteria
• CPU utilization – keep the CPU as busy as possible
• Throughput – # of processes that complete their

execution per time unit
• Turnaround time – amount of time to execute a

particular process
• Waiting time – amount of time a process has been

waiting in the ready queue
• Response time – amount of time it takes from

when a request was submitted until the first
response is produced, not output (for time-sharing
environment)

Scheduling Algorithm Optimization Criteria

• Max CPU utilization

• Max throughput

• Min turnaround time

• Min waiting time

• Min response time

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27

• Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

FCFS Scheduling (Cont)

Suppose that the processes arrive in the order
P2 , P3 , P1

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time: (6 + 0 + 3)/3 = 3
• Much better than previous case
• Convoy effect short process behind long process

P1P3P2

63 300

Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next CPU burst. Use
these lengths to schedule the process with the shortest time

• SJF is optimal – gives minimum average waiting time for a given set of
processes
• The difficulty is knowing the length of the next CPU request

Example of SJF

Process Arrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

• SJF scheduling chart

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4
P3P1

3 160 9

P2

24

Determining Length of Next CPU
Burst

• Can only estimate the length

• Can be done by using the length of previous CPU bursts, using
exponential averaging

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.











 1n

th
n nt

  .1
1 nnn

t  


Prediction of the Length of the Next CPU Burst

Examples of Exponential Averaging

•  =0
• n+1 = n
• Recent history does not count

•  =1
• n+1 =  tn
• Only the actual last CPU burst counts

• If we expand the formula, we get:
n+1 =  tn+(1 - ) tn -1 + …

+(1 - )j tn -j + …
+(1 - )n +1 0

• Since both  and (1 - ) are less than or equal to 1, each successive term
has less weight than its predecessor

Priority Scheduling

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority (smallest
integer  highest priority)
• Preemptive
• nonpreemptive

• SJF is a priority scheduling where priority is the predicted next CPU
burst time

• Problem  Starvation – low priority processes may never execute

• Solution  Aging – as time progresses increase the priority of the
process

Round Robin (RR)
• Each process gets a small unit of CPU time (time

quantum), usually 10-100 milliseconds. After this
time has elapsed, the process is preempted and
added to the end of the ready queue.

• If there are n processes in the ready queue and
the time quantum is q, then each process gets
1/n of the CPU time in chunks of at most q time
units at once. No process waits more than (n-1)q
time units.

• Performance
• q large  FIFO
• q small  q must be large with respect to context

switch, otherwise overhead is too high

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but
better response

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

Multilevel Queue

• Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

• Each queue has its own scheduling algorithm
• foreground – RR
• background – FCFS

• Scheduling must be done between the queues
• Fixed priority scheduling; (i.e., serve all from foreground then from background).

Possibility of starvation.
• Time slice – each queue gets a certain amount of CPU time which it can schedule

amongst its processes; i.e., 80% to foreground in RR
• 20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue
• A process can move between the various

queues; aging can be implemented this way

• Multilevel-feedback-queue scheduler defined
by the following parameters:
• number of queues
• scheduling algorithms for each queue
• method used to determine when to upgrade a

process
• method used to determine when to demote a

process
• method used to determine which queue a process

will enter when that process needs service

Example of Multilevel Feedback
Queue

• Three queues:
• Q0 – RR with time quantum 8 milliseconds

• Q1 – RR time quantum 16 milliseconds

• Q2 – FCFS

• Scheduling
• A new job enters queue Q0 which is served FCFS. When it gains CPU, job

receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to
queue Q1.

• At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still
does not complete, it is preempted and moved to queue Q2.

Multilevel Feedback Queues

Multiple-Processor Scheduling
• CPU scheduling more complex when multiple CPUs

are available

• Homogeneous processors within a multiprocessor

• Asymmetric multiprocessing – only one processor
accesses the system data structures, alleviating the
need for data sharing

• Symmetric multiprocessing (SMP) – each
processor is self-scheduling, all processes in
common ready queue, or each has its own private
queue of ready processes

• Processor affinity – process has affinity for
processor on which it is currently running
• soft affinity
• hard affinity

NUMA and CPU Scheduling

Multicore Processors

• Recent trend to place multiple processor cores on same physical chip

• Faster and consume less power

• Multiple threads per core also growing
• Takes advantage of memory stall to make progress on another thread while

memory retrieve happens

Synchronization

Background
• Concurrent access to shared data may result

in data inconsistency

• Maintaining data consistency requires
mechanisms to ensure the orderly execution
of cooperating processes

• Suppose that we wanted to provide a
solution to the consumer-producer problem
that fills all the buffers. We can do so by
having an integer count that keeps track of
the number of full buffers. Initially, count is
set to 0. It is incremented by the producer
after it produces a new buffer and is
decremented by the consumer after it
consumes a buffer.

Producer
while (true) {

/* produce an item and put in
nextProduced */

while (count == BUFFER_SIZE)

; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}

Consumer
while (true) {

while (count == 0)

; // do nothing

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

count--;

/* consume the item in
nextConsumed

}

Race Condition
• count++ could be implemented as

register1 = count
register1 = register1 + 1
count = register1

• count-- could be implemented as

register2 = count
register2 = register2 - 1
count = register2

• Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

Situation where several processes access and manipulate the
same data concurrently and the outcome of the execution
depends on a particular order in which the access takes place is
called race condition

Critical Section

The notion of a critical section (CS)is introduced to avoid race conditions on data items

Consider a system consisting of N processes each process has a segment of code called a

critical section in which the process may be changing common variables updating a table

writing a file and so the important feature of the system is that when one process is

executing in its critical section no other process is to be allowed to execute in its critical

section

Thus the execution of critical section by the process is mutual mutually exclusive in time

Critical section problem demand up design of a protocol such that each process must

request permission to enter its critical section the section of code implementing this request

is called entry section the critical section may be followed by an exit section the remaining

Court is referred to as reminder section

Solution to Critical-Section Problem
1. Mutual Exclusion - If process Pi is executing in its critical

section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section
and there exist some processes that wish to enter their
critical section, then the selection of the processes that will
enter the critical section next cannot be postponed
indefinitely

3. Bounded Waiting - A bound must exist on the number
of times that other processes are allowed to enter their
critical sections after a process has made a request to enter
its critical section and before that request is granted
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the N processes

Peterson’s Solution
• Two process solution

• Assume that the LOAD and STORE instructions
are atomic; that is, cannot be interrupted.

• The two processes share two variables:
• int turn;
• Boolean flag[2]

• The variable turn indicates whose turn it is to
enter the critical section.

• The flag array is used to indicate if a process is
ready to enter the critical section. flag[i] = true
implies that process Pi is ready!

Algorithm for Process Pi
do {

flag[i] = TRUE;

turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = FALSE;

remainder section

} while (TRUE);

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

Semaphore
• Synchronization tool that does not require busy waiting

• Semaphore S – integer variable

• Two standard operations modify S: wait() and signal()

• Originally called P() and V()
• Less complicated

• Can only be accessed via two indivisible (atomic) operations

• wait (S) {

while S <= 0

; // no-op

S--;

}

• signal (S) {

S++;

}

Semaphore as General Synchronization Tool
• Counting semaphore – integer value can range over an unrestricted domain

• Binary semaphore – integer value can range only between 0 and 1; can be simpler to
implement

• Also known as mutex locks

• Can implement a counting semaphore S as a binary semaphore

• Provides mutual exclusion

Semaphore mutex; // initialized to 1

do {

wait (mutex);

// Critical Section

signal (mutex);

// remainder section

} while (TRUE);

Semaphore Implementation
• Must guarantee that no two processes can execute

wait () and signal () on the same semaphore at the
same time

• Thus, implementation becomes the critical section
problem where the wait and signal code are placed in
the crtical section.
• Could now have busy waiting in critical section

implementation
• But implementation code is short
• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in
critical sections and therefore this is not a good
solution.

Semaphore Implementation with no Busy waiting

• With each semaphore there is an associated
waiting queue. Each entry in a waiting queue
has two data items:
• value (of type integer)
• pointer to next record in the list

• Two operations:
• block – place the process invoking the operation

on the appropriate waiting queue.
• wakeup – remove one of processes in the

waiting queue and place it in the ready queue.

Semaphore Implementation with no Busy waiting (Cont.)

• Implementation of wait:

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

• Implementation of signal:

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}

Deadlock and Starvation
• Deadlock – two or more processes are waiting indefinitely for an

event that can be caused by only one of the waiting processes

• Let S and Q be two semaphores initialized to 1

P0 P1

wait (S); wait (Q);

wait (Q); wait (S);

. .

. .

. .

signal (S); signal (Q);

signal (Q); signal (S);

• Starvation – indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended

• Priority Inversion - Scheduling problem when lower-priority process
holds a lock needed by higher-priority process

Classical Problems of Synchronization

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

Bounded-Buffer Problem
• N buffers, each can hold one item

• Semaphore mutex initialized to the value 1

• Semaphore full initialized to the value 0

• Semaphore empty initialized to the value N.

Bounded Buffer Problem (Cont.)
• The structure of the producer process

do {

// produce an item in nextp

wait (empty);

wait (mutex);

// add the item to the buffer

signal (mutex);

signal (full);

} while (TRUE);

Bounded Buffer Problem (Cont.)
• The structure of the consumer process

do {

wait (full);

wait (mutex);

// remove an item from buffer to nextc

signal (mutex);

signal (empty);

// consume the item in nextc

} while (TRUE);

Readers-Writers Problem
• A data set is shared among a number of

concurrent processes
• Readers – only read the data set; they do not perform

any updates
• Writers – can both read and write

• Problem – allow multiple readers to read at the
same time. Only one single writer can access the
shared data at the same time

• Shared Data
• Data set
• Semaphore mutex initialized to 1
• Semaphore wrt initialized to 1
• Integer readcount initialized to 0

Readers-Writers Problem (Cont.)
• The structure of a writer process

do {
wait (wrt) ;

// writing is performed

signal (wrt) ;
} while (TRUE);

Readers-Writers Problem (Cont.)
• The structure of a reader process

do {

wait (mutex) ;

readcount ++ ;

if (readcount == 1)

wait (wrt) ;

signal (mutex)

// reading is performed

wait (mutex) ;

readcount - - ;

if (readcount == 0)

signal (wrt) ;

signal (mutex) ;

} while (TRUE);

Dining-Philosophers Problem

• Shared data
• Bowl of rice (data set)
• Semaphore chopstick [5] initialized to 1

Dining-Philosophers Problem (Cont.)
• The structure of Philosopher i:

do {
wait (chopstick[i]);
wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);
signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

Problems with Semaphores
• Correct use of semaphore operations:

• signal (mutex) …. wait (mutex)

• wait (mutex) … wait (mutex)

• Omitting of wait (mutex) or signal (mutex) (or
both)

Monitors
• A high-level abstraction that provides a convenient and effective mechanism

for process synchronization

• Only one process may be active within the monitor at a time

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code (….) { … }

…

}

}

Schematic view of a Monitor

Condition Variables
• condition x, y;

• Two operations on a condition variable:
• x.wait () – a process that invokes the operation is

suspended.

• x.signal () – resumes one of processes (if any)
that

invoked x.wait ()

Monitor with Condition Variables

Solution to Dining Philosophers

monitor DP

{

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self [i].wait;

}

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

Solution to Dining Philosophers (cont)

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

Solution to Dining Philosophers (cont)

• Each philosopher I invokes the operations pickup()
and putdown() in the following sequence:

DiningPhilosophters.pickup (i);

EAT

DiningPhilosophers.putdown (i);

Monitor Implementation Using Semaphores

• Variables
semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next-count = 0;

• Each procedure F will be replaced by

wait(mutex);
…
body of F;

…
if (next_count > 0)

signal(next)
else

signal(mutex);

• Mutual exclusion within a monitor is ensured.

Monitor Implementation

• For each condition variable x, we have:

semaphore x_sem; // (initially = 0)

int x-count = 0;

• The operation x.wait can be implemented as:

x-count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x-count--;

Monitor Implementation

• The operation x.signal can be implemented as:

if (x-count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}

A Monitor to Allocate Single Resource

monitor ResourceAllocator

{

boolean busy;

condition x;

void acquire(int time) {

if (busy)

x.wait(time);

busy = TRUE;

}

void release() {

busy = FALSE;

x.signal();

}

initialization code() {

busy = FALSE;

}

}

Windows XP Synchronization

• Uses interrupt masks to protect access to global resources on
uniprocessor systems

• Uses spinlocks on multiprocessor systems

• Also provides dispatcher objects which may act as either mutexes and
semaphores

• Dispatcher objects may also provide events
• An event acts much like a condition variable

Linux Synchronization

• Linux:
• Prior to kernel Version 2.6, disables interrupts to implement short critical

sections

• Version 2.6 and later, fully preemptive

• Linux provides:
• semaphores

• spin locks

