
Socket Communication



Remote Procedure Calls

• Remote procedure call (RPC) abstracts procedure calls between 
processes on networked systems

• Stubs – client-side proxy for the actual procedure on the server

• The client-side stub locates the server and marshalls the parameters

• The server-side stub receives this message, unpacks the marshalled 
parameters, and peforms the procedure on the server



Execution of RPC



Remote Method Invocation

• Remote Method Invocation (RMI) is a Java mechanism similar to RPCs

• RMI allows a Java program on one machine to invoke a method on a 
remote object



Marshalling Parameters



Multithreaded Programming



Single and Multithreaded Processes



Benefits

• Responsiveness

• Resource Sharing

• Economy

• Scalability



Multicore Programming

• Multicore systems putting pressure on programmers, challenges 
include
• Dividing activities

• Balance

• Data splitting

• Data dependency

• Testing and debugging



Multithreaded Server Architecture



Concurrent Execution on a Single-core System



Parallel Execution on a Multicore System



User Threads

• Thread management done by user-level threads library

• Three primary thread libraries:
• POSIX Pthreads

• Win32 threads

• Java threads



Kernel Threads

• Supported by the Kernel

• Examples
• Windows XP/2000

• Solaris

• Linux

• Tru64 UNIX

• Mac OS X



Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many



Many-to-One

• Many user-level threads mapped to single kernel thread

• Examples:
• Solaris Green Threads

• GNU Portable Threads



Many-to-One Model



One-to-One

• Each user-level thread maps to kernel thread

• Examples
• Windows NT/XP/2000

• Linux

• Solaris 9 and later



One-to-one Model



Many-to-Many Model

• Allows many user level threads to be 
mapped to many kernel threads

• Allows the  operating system to create a 
sufficient number of kernel threads

• Solaris prior to version 9

• Windows NT/2000 with the ThreadFiber
package



Many-to-Many Model



Two-level Model
• Similar to M:M, except that it allows a 

user thread to be bound to kernel thread

• Examples
• IRIX

• HP-UX

• Tru64 UNIX

• Solaris 8 and earlier



Two-level Model



Thread Libraries

• Thread library provides programmer with API for creating and 
managing threads

• Two primary ways of implementing
• Library entirely in user space

• Kernel-level library supported by the OS



Pthreads
• May be provided either as user-level or 

kernel-level

• A POSIX standard (IEEE 1003.1c) API for 
thread creation and synchronization

• API specifies behavior of the thread library, 
implementation is up to development of 
the library

• Common in UNIX operating systems 
(Solaris, Linux, Mac OS X)



Java Threads
• Java threads are managed by the JVM

• Typically implemented using the threads model provided 
by underlying OS

• Java threads may be created by:

• Extending Thread class
• Implementing the Runnable interface



Threading Issues
• Semantics of fork() and exec() system calls

• Thread cancellation of target thread
• Asynchronous or deferred

• Signal handling

• Thread pools

• Thread-specific data

• Scheduler activations



Semantics of fork() and exec()

• Does fork() duplicate only the calling thread or all threads?



Thread Cancellation
• Terminating a thread before it has finished

• Two general approaches:
• Asynchronous cancellation terminates the 

target thread  immediately

• Deferred cancellation allows the target thread 
to periodically check if it should be cancelled



Signal Handling
• Signals are used in UNIX systems to notify a 

process that a particular event has occurred
• A signal handler is used to process signals

1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

• Options:
• Deliver the signal to the thread to which the signal 

applies
• Deliver the signal to every thread in the process
• Deliver the signal to certain threads in the process
• Assign a specific threa to receive all signals for the 

process



Thread Pools
• Create a number of threads in a pool where they 

await work

• Advantages:
• Usually slightly faster to service a request with an 

existing thread than create a new thread

• Allows the number of threads in the application(s) to 
be bound to the size of the pool



Thread Specific Data
• Allows each thread to have its own copy of 

data

• Useful when you do not have control over the 
thread creation process (i.e., when using a 
thread pool)



Process Scheduling



Basic Concepts
• Maximum CPU utilization obtained with 

multiprogramming

• CPU–I/O Burst Cycle – Process execution 
consists of a cycle of CPU execution and I/O 
wait

• CPU burst distribution



Histogram of CPU-burst Times



Alternating Sequence of CPU And I/O Bursts



CPU Scheduler

• Selects from among the processes in memory that are ready to 
execute, and allocates the CPU to one of them

• CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

• Scheduling under 1 and 4 is nonpreemptive

• All other scheduling is preemptive



Dispatcher
• Dispatcher module gives control of the CPU to 

the process selected by the short-term 
scheduler; this involves:
• switching context

• switching to user mode

• jumping to the proper location in the user program 
to restart that program

• Dispatch latency – time it takes for the 
dispatcher to stop one process and start 
another running



Scheduling Criteria
• CPU utilization – keep the CPU as busy as possible
• Throughput – # of processes that complete their 

execution per time unit
• Turnaround time – amount of time to execute a 

particular process
• Waiting time – amount of time a process has been 

waiting in the ready queue
• Response time – amount of time it takes from 

when a request was submitted until the first 
response is produced, not output  (for time-sharing 
environment)



Scheduling Algorithm Optimization Criteria

• Max CPU utilization

• Max throughput

• Min turnaround time 

• Min waiting time 

• Min response time



First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27

• Average waiting time:  (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300



FCFS Scheduling (Cont)

Suppose that the processes arrive in the order
P2 , P3 , P1

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time:   (6 + 0 + 3)/3 = 3
• Much better than previous case
• Convoy effect short process behind long process

P1P3P2

63 300



Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next CPU burst.  Use 
these lengths to schedule the process with the shortest time

• SJF is optimal – gives minimum average waiting time for a given set of 
processes
• The difficulty is knowing the length of the next CPU request



Example of SJF

Process Arrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

• SJF scheduling chart

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4
P3P1

3 160 9

P2

24



Determining Length of Next CPU 
Burst

• Can only estimate the length

• Can be done by using the length of previous CPU bursts, using 
exponential averaging
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Prediction of the Length of the Next CPU Burst



Examples of Exponential Averaging

•  =0
• n+1 = n
• Recent history does not count

•  =1
• n+1 =  tn
• Only the actual last CPU burst counts

• If we expand the formula, we get:
n+1 =  tn+(1 - ) tn -1 + …

+(1 -  )j tn -j + …
+(1 -  )n +1 0

• Since both  and (1 - ) are less than or equal to 1, each successive term 
has less weight than its predecessor



Priority Scheduling

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority (smallest 
integer  highest priority)
• Preemptive
• nonpreemptive

• SJF is a priority scheduling where priority is the predicted next CPU 
burst time

• Problem  Starvation – low priority processes may never execute

• Solution  Aging – as time progresses increase the priority of the 
process



Round Robin (RR)
• Each process gets a small unit of CPU time (time 

quantum), usually 10-100 milliseconds.  After this 
time has elapsed, the process is preempted and 
added to the end of the ready queue.

• If there are n processes in the ready queue and 
the time quantum is q, then each process gets 
1/n of the CPU time in chunks of at most q time 
units at once.  No process waits more than (n-1)q 
time units.

• Performance
• q large  FIFO
• q small  q must be large with respect to context 

switch, otherwise overhead is too high



Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

• The Gantt chart is: 

• Typically, higher average turnaround than SJF, but 
better response

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30



Time Quantum and Context Switch Time



Turnaround Time Varies With The Time Quantum



Multilevel Queue

• Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

• Each queue has its own scheduling algorithm
• foreground – RR
• background – FCFS

• Scheduling must be done between the queues
• Fixed priority scheduling; (i.e., serve all from foreground then from background).  

Possibility of starvation.
• Time slice – each queue gets a certain amount of CPU time which it can schedule 

amongst its processes; i.e., 80% to foreground in RR
• 20% to background in FCFS 



Multilevel Queue Scheduling



Multilevel Feedback Queue
• A process can move between the various 

queues; aging can be implemented this way

• Multilevel-feedback-queue scheduler defined 
by the following parameters:
• number of queues
• scheduling algorithms for each queue
• method used to determine when to upgrade a 

process
• method used to determine when to demote a 

process
• method used to determine which queue a process 

will enter when that process needs service



Example of Multilevel Feedback 
Queue

• Three queues: 
• Q0 – RR with time quantum 8 milliseconds

• Q1 – RR time quantum 16 milliseconds

• Q2 – FCFS

• Scheduling
• A new job enters queue Q0 which is served FCFS. When it gains CPU, job 

receives 8 milliseconds.  If it does not finish in 8 milliseconds, job is moved to 
queue Q1.

• At Q1 job is again served FCFS and receives 16 additional milliseconds.  If it still 
does not complete, it is preempted and moved to queue Q2.



Multilevel Feedback Queues



Multiple-Processor Scheduling
• CPU scheduling more complex when multiple CPUs 

are available

• Homogeneous processors within a multiprocessor

• Asymmetric multiprocessing – only one processor 
accesses the system data structures, alleviating the 
need for data sharing

• Symmetric multiprocessing  (SMP) – each 
processor is self-scheduling, all processes in 
common ready queue, or each has its own private 
queue of ready processes

• Processor affinity – process has affinity for 
processor on which it is currently running
• soft affinity
• hard affinity



NUMA and CPU Scheduling



Multicore Processors

• Recent trend to place multiple processor cores on same physical chip

• Faster and consume less power

• Multiple threads per core also growing
• Takes advantage of memory stall to make progress on another thread while 

memory retrieve happens



Synchronization



Background
• Concurrent access to shared data may result 

in data inconsistency

• Maintaining data consistency requires 
mechanisms to ensure the orderly execution 
of cooperating processes

• Suppose that we wanted to provide a 
solution to the consumer-producer problem 
that fills all the buffers. We can do so by 
having an integer count that keeps track of 
the number of full buffers.  Initially, count is 
set to 0. It is incremented by the producer 
after it produces a new buffer and is 
decremented by the consumer after it 
consumes a buffer.



Producer 
while (true) {

/*  produce an item and put in 
nextProduced  */

while (count == BUFFER_SIZE)

; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}   



Consumer
while (true)  {

while (count == 0)

; // do nothing

nextConsumed =  buffer[out];

out = (out + 1) % BUFFER_SIZE;

count--;

/*  consume the item in 
nextConsumed

}



Race Condition
• count++ could be implemented as

register1 = count
register1 = register1 + 1
count = register1

• count-- could be implemented as

register2 = count
register2 = register2 - 1
count = register2

• Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1  {register1 = 6} 
S2: consumer execute register2 = count {register2 = 5} 
S3: consumer execute register2 = register2 - 1 {register2 = 4} 
S4: producer execute count = register1 {count = 6 } 
S5: consumer execute count = register2 {count = 4}

Situation where several processes access and manipulate the 
same data concurrently and the outcome of the execution 
depends on a particular order in which the access takes place is 
called race condition



Critical Section

The notion of a critical section (CS)is introduced to avoid race conditions on data items

Consider a system consisting of N processes each process has a segment of code called a 

critical section in which the process may be changing common variables updating a table 

writing a file and so the important feature of the system is that when one process is 

executing in its critical section no other process is to be allowed to execute in its critical 

section

Thus the execution of critical section by the process is mutual mutually exclusive in time

Critical section problem demand up design of a protocol such that each process must 

request permission to enter its critical section the section of code implementing this request 

is called entry section the critical section may be followed by an exit section the remaining 

Court is referred to as reminder section



Solution to Critical-Section Problem
1. Mutual Exclusion - If process Pi is executing in its critical 

section, then no other processes can be executing in their 
critical sections

2. Progress - If no process is executing in its critical section 
and there exist some processes that wish to enter their 
critical section, then the selection of the processes that will 
enter the critical section next cannot be postponed 
indefinitely

3. Bounded Waiting - A bound must exist on the number 
of times that other processes are allowed to enter their 
critical sections after a process has made a request to enter 
its critical section and before that request is granted
 Assume that each process executes at a nonzero speed 
 No assumption concerning relative speed of the N processes



Peterson’s Solution
• Two process solution

• Assume that the LOAD and STORE instructions 
are atomic; that is, cannot be interrupted.

• The two processes share two variables:
• int turn; 
• Boolean flag[2]

• The variable turn indicates whose turn it is to 
enter the critical section.  

• The flag array is used to indicate if a process is 
ready to enter the critical section. flag[i] = true 
implies that process Pi is ready!



Algorithm for Process Pi
do { 

flag[i] = TRUE; 

turn = j; 

while (flag[j] && turn == j); 

critical section 

flag[i] = FALSE; 

remainder section 

} while (TRUE); 



Solution to Critical-section Problem Using Locks

do { 

acquire lock 

critical section 

release lock 

remainder section 

} while (TRUE); 



Semaphore
• Synchronization tool that does not require busy waiting 

• Semaphore S – integer variable

• Two standard operations modify S: wait() and signal()

• Originally called P() and V()
• Less complicated

• Can only be accessed via two indivisible (atomic) operations

• wait (S) { 

while S <= 0

; // no-op

S--;

}

• signal (S) { 

S++;

}



Semaphore as General Synchronization Tool
• Counting semaphore – integer value can range over an unrestricted domain

• Binary semaphore – integer value can range only between 0 and 1; can be simpler to 
implement

• Also known as mutex locks

• Can implement a counting semaphore S as a binary semaphore

• Provides mutual exclusion

Semaphore mutex;    //  initialized to 1

do {

wait (mutex);

// Critical Section

signal (mutex);

// remainder section

} while (TRUE);



Semaphore Implementation
• Must guarantee that no two processes can execute 

wait () and signal () on the same semaphore at the 
same time

• Thus, implementation becomes the critical section 
problem where the wait and signal code are placed in 
the crtical section.
• Could now have busy waiting in critical section 

implementation
• But implementation code is short
• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in 
critical sections and therefore this is not a good 
solution.



Semaphore Implementation with no Busy waiting

• With each semaphore there is an associated 
waiting queue. Each entry in a waiting queue 
has two data items:
• value (of type integer)
• pointer to next record in the list

• Two operations:
• block – place the process invoking the operation 

on the      appropriate waiting queue.
• wakeup – remove one of processes in the 

waiting queue and place it in the ready queue.



Semaphore Implementation with no Busy waiting (Cont.)

• Implementation of wait:

wait(semaphore *S) { 

S->value--; 

if (S->value < 0) { 

add this process to S->list; 

block(); 

} 

}

• Implementation of signal:

signal(semaphore *S) { 

S->value++; 

if (S->value <= 0) { 

remove a process P from S->list; 

wakeup(P); 

}

} 



Deadlock and Starvation
• Deadlock – two or more processes are waiting indefinitely for an 

event that can be caused by only one of the waiting processes

• Let S and Q be two semaphores initialized to 1

P0 P1

wait (S); wait (Q);

wait (Q); wait (S);

. .

. .

. .

signal  (S); signal (Q);

signal (Q); signal (S);

• Starvation – indefinite blocking.  A process may never be removed 
from the semaphore queue in which it is suspended

• Priority Inversion  - Scheduling problem when lower-priority process 
holds a lock needed by higher-priority process



Classical Problems of Synchronization

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem



Bounded-Buffer Problem
• N buffers, each can hold one item

• Semaphore mutex initialized to the value 1

• Semaphore full initialized to the value 0

• Semaphore empty initialized to the value N.



Bounded Buffer Problem (Cont.)
• The structure of the producer process

do  {

//   produce an item in nextp

wait (empty);

wait (mutex);

//  add the item to the  buffer

signal (mutex);

signal (full);

} while (TRUE);



Bounded Buffer Problem (Cont.)
• The structure of the consumer process

do {

wait (full);

wait (mutex);

//  remove an item from  buffer to nextc

signal (mutex);

signal (empty);

//  consume the item in nextc

} while (TRUE);



Readers-Writers Problem
• A data set is shared among a number of 

concurrent processes
• Readers – only read the data set; they do not perform 

any updates
• Writers   – can both read and write

• Problem – allow multiple readers to read at the 
same time.  Only one single writer can access the 
shared data at the same time

• Shared Data
• Data set
• Semaphore mutex initialized to 1
• Semaphore wrt initialized to 1
• Integer readcount initialized to 0



Readers-Writers Problem (Cont.)
• The structure of a writer process

do {
wait (wrt) ;

//    writing is performed

signal (wrt) ;
} while (TRUE);



Readers-Writers Problem (Cont.)
• The structure of a reader process

do {

wait (mutex) ;

readcount ++ ;

if (readcount == 1)  

wait (wrt) ;

signal (mutex)

// reading is performed

wait (mutex) ;

readcount  - - ;

if (readcount  == 0)  

signal (wrt) ;

signal (mutex) ;

} while (TRUE);



Dining-Philosophers Problem

• Shared data 
• Bowl of rice (data set)
• Semaphore chopstick [5] initialized to 1



Dining-Philosophers Problem (Cont.)
• The structure of Philosopher i:

do  { 
wait ( chopstick[i] );
wait ( chopStick[ (i + 1) % 5] );

//  eat

signal ( chopstick[i] );
signal (chopstick[ (i + 1) % 5] );

//  think

} while (TRUE);



Problems with Semaphores
• Correct use of semaphore operations:

• signal (mutex)  ….  wait (mutex)

• wait (mutex)  …  wait (mutex)

• Omitting  of wait (mutex) or signal (mutex) (or 
both)



Monitors
• A high-level abstraction that provides a convenient and effective mechanism 

for process synchronization

• Only one process may be active within the monitor at a time

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code ( ….) { … }

…

}

}



Schematic view of a Monitor



Condition Variables
• condition x, y;

• Two operations on a condition variable:
• x.wait () – a process that invokes the operation is 

suspended.

• x.signal () – resumes one of processes (if any)
that

invoked x.wait ()



Monitor with Condition Variables



Solution to Dining Philosophers

monitor DP

{ 

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) { 

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self [i].wait;

}

void putdown (int i) { 

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}



Solution to Dining Philosophers (cont)

void test (int i) { 

if ( (state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() { 

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}



Solution to Dining Philosophers (cont)

• Each philosopher I invokes the operations pickup()
and putdown() in the following sequence:

DiningPhilosophters.pickup (i);

EAT

DiningPhilosophers.putdown (i);



Monitor Implementation Using Semaphores

• Variables 
semaphore mutex;  // (initially  = 1)
semaphore next;     // (initially  = 0)
int next-count = 0;

• Each procedure F will be replaced by

wait(mutex);
…
body of F;

…
if (next_count > 0)

signal(next)
else 

signal(mutex);

• Mutual exclusion within a monitor is ensured.



Monitor Implementation

• For each condition variable x, we  have:

semaphore x_sem; // (initially  = 0)

int x-count = 0;

• The operation x.wait can be implemented as:

x-count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x-count--;



Monitor Implementation

• The operation x.signal can be implemented as:

if (x-count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}



A Monitor to Allocate Single Resource

monitor ResourceAllocator 

{ 

boolean busy; 

condition x; 

void acquire(int time) { 

if (busy) 

x.wait(time); 

busy = TRUE; 

} 

void release() { 

busy = FALSE; 

x.signal(); 

} 

initialization code() {

busy = FALSE; 

}

}



Windows XP Synchronization

• Uses interrupt masks to protect access to global resources on 
uniprocessor systems

• Uses spinlocks on multiprocessor systems

• Also provides dispatcher objects which may act as either mutexes and 
semaphores

• Dispatcher objects may also provide events
• An event acts much like a condition variable



Linux Synchronization

• Linux:
• Prior to kernel Version 2.6, disables interrupts to implement short critical 

sections

• Version 2.6 and later, fully preemptive

• Linux provides:
• semaphores

• spin locks


