
Deadlocks



The Deadlock Problem
• A set of blocked processes each holding a resource 

and waiting to acquire a resource held by another 
process in the set

• Example 
• System has 2 disk drives
• P1 and P2 each hold one disk drive and each needs 

another one

• Example 
• semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)



Bridge Crossing Example

• Traffic only in one direction

• Each section of a bridge can be viewed as a resource

• If a deadlock occurs, it can be resolved if one car backs up 
(preempt resources and rollback)

• Several cars may have to be backed up if a deadlock occurs

• Starvation is possible

• Note – Most OSes do not prevent or deal with deadlocks



System Model
• Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:
• request 

• use 

• release



Deadlock Characterization

• Mutual exclusion: only one process at a time can use 
a resource

• Hold and wait: a process holding at least one resource 
is waiting to acquire additional resources held by other 
processes

• No preemption: a resource can be released only 
voluntarily by the process holding it, after that process 
has completed its task

• Circular wait: there exists a set {P0, P1, …, P0} of 
waiting processes such that P0 is waiting for a resource 
that is held by P1, P1 is waiting for a resource that is 
held by 

P2, …, Pn–1 is waiting for a resource that is held by 
Pn, and P0 is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.



Resource-Allocation Graph

• V is partitioned into two types:
• P = {P1, P2, …, Pn}, the set consisting of all the processes 

in the system

• R = {R1, R2, …, Rm}, the set consisting of all resource types 
in the system

• request edge – directed edge P1  Rj

• assignment edge – directed edge Rj  Pi

A set of vertices V and a set of edges E.



Resource-Allocation Graph (Cont.)

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj
Pi

Pi

Rj

Rj



Example of a Resource Allocation 
Graph



Resource Allocation Graph With A Deadlock



Graph With A Cycle But No Deadlock



Basic Facts
• If graph contains no cycles  no 

deadlock

• If graph contains a cycle 
• if only one instance per resource type, then 

deadlock

• if several instances per resource type, 
possibility of deadlock



Methods for Handling Deadlocks
• Ensure that the system will never enter a deadlock 

state

• Allow the system to enter a deadlock state and then 
recover

• Ignore the problem and pretend that deadlocks 
never occur in the system; used by most operating 
systems, including UNIX



Deadlock Prevention

• Mutual Exclusion – not required for sharable 
resources; must hold for nonsharable resources

• Hold and Wait – must guarantee that whenever a 
process requests a resource, it does not hold any 
other resources
• Require process to request and be allocated all its 

resources before it begins execution, or allow process to 
request resources only when the process has none

• Low resource utilization; starvation possible

Restrain the ways request can be made



Deadlock Prevention (Cont.)
• No Preemption –

• If a process that is holding some resources requests 
another resource that cannot be immediately allocated to 
it, then all resources currently being held are released

• Preempted resources are added to the list of resources for 
which the process is waiting

• Process will be restarted only when it can regain its old 
resources, as well as the new ones that it is requesting

• Circular Wait – impose a total ordering of all resource 
types, and require that each process requests 
resources in an increasing order of enumeration



Deadlock Avoidance

• Simplest and most useful model requires that 
each process declare the maximum number
of resources of each type that it may need

• The deadlock-avoidance algorithm 
dynamically examines the resource-allocation 
state to ensure that there can never be a 
circular-wait condition

• Resource-allocation state is defined by the 
number of available and allocated resources, 
and the maximum demands of the processes

Requires that the system has some additional a priori information 

available



Safe State
• When a process requests an available resource, 

system must decide if immediate allocation leaves the 
system in a safe state

• System is in safe state if there exists a sequence <P1, 
P2, …, Pn> of ALL the  processes  is the systems such 
that  for each Pi, the resources that Pi can still request 
can be satisfied by currently available resources + 
resources held by all the Pj, with j < i

• That is:
• If Pi resource needs are not immediately available, then Pi

can wait until all Pj have finished
• When Pj is finished, Pi can obtain needed resources, execute, 

return allocated resources, and terminate
• When Pi terminates, Pi +1 can obtain its needed resources, 

and so on 



Basic Facts
• If a system is in safe state  no 

deadlocks

• If a system is in unsafe state 
possibility of deadlock

• Avoidance  ensure that a system will 
never enter an unsafe state.



Safe, Unsafe , Deadlock State 



Avoidance algorithms
• Single instance of a resource type

• Use a resource-allocation graph

• Multiple instances of a resource type
• Use the banker’s algorithm



Resource-Allocation Graph Scheme

• Claim edge Pi  Rj indicated that process Pj may 
request resource Rj; represented by a dashed line

• Claim edge converts to request edge when a 
process requests a resource

• Request edge converted to an assignment edge 
when the  resource is allocated to the process

• When a resource is released by a process, 
assignment edge reconverts to a claim edge

• Resources must be claimed a priori in the system



Resource-Allocation Graph



Unsafe State In Resource-Allocation Graph



Resource-Allocation Graph Algorithm

• Suppose that process Pi requests a 
resource Rj

• The request can be granted only if 
converting the request edge to an 
assignment edge does not result in the 
formation of a cycle in the resource 
allocation graph



Banker’s Algorithm
• Multiple instances

• Each process must a priori claim 
maximum use

• When a process requests a resource it 
may have to wait  

• When a process gets all its resources it 
must return them in a finite amount of 
time



Data Structures for the Banker’s Algorithm 

• Available: Vector of length m. If available [j] = k, 
there are k instances of resource type Rj available

• Max: n x m matrix.  If Max [i,j] = k, then process Pi
may request at most k instances of resource type Rj

• Allocation:  n x m matrix.  If Allocation[i,j] = k then
Pi is currently allocated k instances of Rj

• Need:  n x m matrix. If Need[i,j] = k, then Pi may 
need k more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types. 



Safety Algorithm
1. Let Work and Finish be vectors of length m and n, 

respectively.  Initialize:
Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find and i such that both: 
(a) Finish [i] = false
(b) Needi  Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a 
safe state



Resource-Request Algorithm for Process Pi

Request = request vector for process Pi.  If 
Requesti [j] = k then process Pi wants k instances 
of resource type Rj

1.If Requesti  Needi go to step 2.  Otherwise, raise error 
condition, since process has exceeded its maximum 
claim

2.If Requesti  Available, go to step 3.  Otherwise Pi
must wait, since resources are not available

3.Pretend to allocate requested resources to Pi by 
modifying the state as follows:

Available = Available  – Request;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

 If safe  the resources are allocated to Pi
 If unsafe  Pi must wait, and the old resource-allocation 

state is restored



Example of Banker’s Algorithm
• 5 processes P0  through P4; 

3 resource types:

A (10 instances),  B (5instances), and C (7 instances)

Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2  

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3  



Example (Cont.)
• The content of the matrix Need is defined to be Max –

Allocation

Need

A B C

P0 7 4 3 

P1 1 2 2 

P2 6 0 0 

P3 0 1 1

P4 4 3 1 

• The system is in a safe state since the sequence < P1, P3, P4, 
P2, P0> satisfies safety criteria



Example:  P1 Request (1,0,2)
• Check that Request  Available (that is, (1,0,2)  (3,3,2) 

true

Allocation Need Available

A B C A B C A B C 

P0 0 1 0 7 4 3 2 3 0

P13 0 2                      0 2 0 

P2 3 0 1 6 0 0 

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1 

• Executing safety algorithm shows that sequence < P1, P3, 
P4, P0, P2> satisfies safety requirement

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?



Deadlock Detection

• Allow system to enter deadlock state 

• Detection algorithm

• Recovery scheme



Single Instance of Each Resource 
Type

• Maintain wait-for graph
• Nodes are processes
• Pi  Pj   if Pi is waiting for Pj

• Periodically invoke an algorithm that 
searches for a cycle in the graph. If there is 
a cycle, there exists a deadlock

• An algorithm to detect a cycle in a graph 
requires an order of n2 operations, where 
n is the number of vertices in the graph



Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph



Several Instances of a Resource Type

• Available: A vector of length m indicates the number 
of available resources of each type.

• Allocation: An n x m matrix defines the number of 
resources of each type currently allocated to each 
process.

• Request: An n x m matrix indicates the current 
request  of each process.  If Request [ij] = k, then 
process Pi is requesting k more instances of resource 
type. Rj.



Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively 
Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi  0, then 
Finish[i] = false;otherwise, Finish[i] = true

2. Find an index i such that both:
(a) Finish[i] == false

(b) Requesti  Work

If no such i exists, go to step 4



Detection Algorithm (Cont.)
3.Work = Work + Allocationi

Finish[i] = true
go to step 2

4.If Finish[i] == false, for some i, 1  i  n, then the system is in 
deadlock state. Moreover, if Finish[i] == false, then Pi is deadlocked

Algorithm requires an order of O(m x n2) operations to detect 

whether the system is in deadlocked state



Example of Detection Algorithm

• Five processes P0 through P4; three resource types 
A (7 instances), B (2 instances), and C (6 instances)

• Snapshot at time T0:
AllocationRequest Available

A B C A B C A B C
P00 1 0                    0 0 0 0 0 0
P1 2 0 0 2 0 2
P23 0 3                    0 0 0 
P3 2 1 1 1 0 0 
P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i



Example (Cont.)

• P2 requests an additional instance of type C

Request

A B C

P0 0 0 0

P1 2 0 1

P2 0 0 1

P3 1 0 0 

P4 0 0 2

• State of system?
• Can reclaim resources held by process P0, but insufficient resources to fulfill other processes; 

requests
• Deadlock exists, consisting of processes P1, P2, P3, and P4



Detection-Algorithm Usage

• When, and how often, to invoke depends on:
• How often a deadlock is likely to occur?

• How many processes will need to be rolled back?
• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily, there may be many cycles 
in the resource graph and so we would not be able to tell which of 
the many deadlocked processes “caused” the deadlock



Recovery from Deadlock:  Process Termination

• Abort all deadlocked processes

• Abort one process at a time until the deadlock cycle is eliminated

• In which order should we choose to abort?
• Priority of the process
• How long process has computed, and how much longer to completion
• Resources the process has used
• Resources process needs to complete
• How many processes will need to be terminated
• Is process interactive or batch?



Recovery from Deadlock: Resource Preemption

• Selecting a victim – minimize cost

• Rollback – return to some safe state, restart 
process for that state

• Starvation – same process may always be 
picked as victim, include number of rollback in 
cost factor



Memory Management Strategies



Background

• Program must be brought (from disk)  into 
memory and placed within a process for it to be 
run

• Main memory and registers are only storage 
CPU can access directly

• Register access in one CPU clock (or less)

• Main memory can take many cycles

• Cache sits between main memory and CPU 
registers

• Protection of memory required to ensure 
correct operation



Base and Limit Registers

• A pair of base and limit registers define the 
logical address space



Binding of Instructions and Data to Memory

• Address binding of instructions and data to 
memory addresses can happen at three different 
stages
• Compile time:  If memory location known a priori, 

absolute code can be generated; must recompile 
code if starting location changes

• Load time:  Must generate relocatable code if 
memory location is not known at compile time

• Execution time:  Binding delayed until run time if the 
process can be moved during its execution from one 
memory segment to another.  Need hardware support 
for address maps (e.g., base and limit registers)



Multistep Processing of a User Program 



Logical vs. Physical Address Space
• The concept of a logical address space that is 

bound to a separate physical address space
is central to proper memory management
• Logical address – generated by the CPU; also 

referred to as virtual address
• Physical address – address seen by the memory 

unit

• Logical and physical addresses are the same 
in compile-time and load-time address-
binding schemes; logical (virtual) and 
physical addresses differ in execution-time 
address-binding scheme



Memory-Management Unit (MMU)
• Hardware device that maps virtual to physical 

address

• In MMU scheme, the value in the relocation 
register is added to every address generated by 
a user process at the time it is sent to memory

• The user program deals with logical addresses; 
it never sees the real physical addresses



Dynamic relocation using a relocation register



Dynamic Loading
• Routine is not loaded until it is called

• Better memory-space utilization; unused 
routine is never loaded

• Useful when large amounts of code are needed 
to handle infrequently occurring cases

• No special support from the operating system is 
required implemented through program design



Dynamic Linking
• Linking postponed until execution time

• Small piece of code, stub, used to locate the 
appropriate memory-resident library routine

• Stub replaces itself with the address of the 
routine, and executes the routine

• Operating system needed to check if routine is 
in processes’ memory address

• Dynamic linking is particularly useful for 
libraries

• System also known as shared libraries



Swapping
• A process can be swapped temporarily out of memory to a backing store, and then 

brought back into memory for continued execution

• Backing store – fast disk large enough to accommodate copies of all memory 
images for all users; must provide direct access to these memory images

• Roll out, roll in – swapping variant used for priority-based scheduling algorithms; 
lower-priority process is swapped out so higher-priority process can be loaded and 
executed

• Major part of swap time is transfer time; total transfer time is directly proportional 
to the amount of memory swapped

• Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and 
Windows)

• System maintains a ready queue of ready-to-run processes which have memory 
images on disk



Schematic View of Swapping



Contiguous Allocation
• Main memory usually into two partitions:

• Resident operating system, usually held in low 
memory with interrupt vector

• User processes then held in high memory

• Relocation registers used to protect user 
processes from each other, and from changing 
operating-system code and data
• Base register contains value of smallest physical 

address
• Limit register contains range of logical addresses –

each logical address must be less than the limit 
register 

• MMU maps logical address dynamically



Hardware Support for Relocation and Limit Registers



Contiguous Allocation (Cont)
• Multiple-partition allocation

• Hole – block of available memory; holes of various 
size are scattered throughout memory

• When a process arrives, it is allocated memory from 
a hole large enough to accommodate it

• Operating system maintains information about:
a) allocated partitions    b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10



Dynamic Storage-Allocation Problem

• First-fit:  Allocate the first hole that is big enough

• Best-fit:  Allocate the smallest hole that is big enough; 
must search entire list, unless ordered by size  
• Produces the smallest leftover hole

• Worst-fit:  Allocate the largest hole; must also search 
entire list  
• Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes

First-fit and best-fit better than worst-fit in terms of 

speed and storage utilization



Fragmentation
• External Fragmentation – total memory space 

exists to satisfy a request, but it is not contiguous
• Internal Fragmentation – allocated memory may 

be slightly larger than requested memory; this size 
difference is memory internal to a partition, but not 
being used

• Reduce external fragmentation by compaction
• Shuffle memory contents to place all free memory 

together in one large block
• Compaction is possible only if relocation is dynamic, and 

is done at execution time
• I/O problem

• Latch job in memory while it is involved in I/O
• Do I/O only into OS buffers



Paging
• Logical address space of a process can be 

noncontiguous; process is allocated physical 
memory whenever the latter is available

• Divide physical memory into fixed-sized blocks 
called frames (size is power of 2, between 512 bytes 
and 8,192 bytes)

• Divide logical memory into blocks of same size 
called pages

• Keep track of all free frames

• To run a program of size n pages, need to find n free 
frames and load program

• Set up a page table to translate logical to physical 
addresses

• Internal fragmentation



Address Translation Scheme
• Address generated by CPU is divided into:

• Page number (p) – used as an index into a page table which contains 
base address of each page in physical memory

• Page offset (d) – combined with base address to define the physical 
memory address that is sent to the memory unit

• For given logical address space 2m and page size 2n

page number page offset

p d

m - n n



Paging Hardware



Paging Model of Logical and Physical Memory



Paging Example

32-byte memory and 4-byte pages



Free Frames

Before allocation After allocation



Implementation of Page Table
• Page table is kept in main memory

• Page-table base register (PTBR) points to the page 
table

• Page-table length register (PRLR) indicates size of the 
page table

• In this scheme every data/instruction access requires 
two memory accesses.  One for the page table and one 
for the data/instruction.

• The two memory access problem can be solved by the 
use of a special fast-lookup hardware cache called 
associative memory or translation look-aside buffers 
(TLBs)

• Some TLBs store address-space identifiers (ASIDs) in 
each TLB entry – uniquely identifies each process to 
provide address-space protection for that process



Associative Memory
• Associative memory – parallel search 

Address translation (p, d)
• If p is in associative register, get frame # out

• Otherwise get frame # from page table in memory

Page # Frame #



Paging Hardware With TLB



Effective Access Time
• Associative Lookup =  time unit

• Assume memory cycle time is 1 microsecond

• Hit ratio – percentage of times that a page 
number is found in the associative registers; 
ratio related to number of associative registers

• Hit ratio = 

• Effective Access Time (EAT)

EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 



Memory Protection
• Memory protection implemented by 

associating protection bit with each frame

• Valid-invalid bit attached to each entry in 
the page table:
• “valid” indicates that the associated page is in 

the process’ logical address space, and is thus a 
legal page

• “invalid” indicates that the page is not in the 
process’ logical address space



Valid (v) or Invalid (i) Bit In A Page 
Table



Shared Pages
• Shared code

• One copy of read-only (reentrant) code shared 
among processes (i.e., text editors, compilers, 
window systems).

• Shared code must appear in same location in 
the logical address space of all processes

• Private code and data
• Each process keeps a separate copy of the code 

and data
• The pages for the private code and data can 

appear anywhere in the logical address space



Shared Pages Example



Structure of the Page Table
• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables



Hierarchical Page Tables
• Break up the logical address space into multiple 

page tables

• A simple technique is a two-level page table



Two-Level Page-Table Scheme



Two-Level Paging Example
• A logical address (on 32-bit machine with 1K page size) is divided into:

• a page number consisting of 22 bits

• a page offset consisting of 10 bits

• Since the page table is paged, the page number is further divided into:

• a 12-bit page number 

• a 10-bit page offset

• Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement within the page 
of the outer page table

page number page offset

pi p2 d

12 10 10



Address-Translation Scheme



Three-level Paging Scheme



Hashed Page Tables
• Common in address spaces > 32 bits

• The virtual page number is hashed into a page 
table
• This page table contains a chain of elements hashing 

to the same location

• Virtual page numbers are compared in this 
chain searching for a match
• If a match is found, the corresponding physical 

frame is extracted



Hashed Page Table



Inverted Page Table
• One entry for each real page of memory

• Entry consists of the virtual address of the 
page stored in that real memory location, 
with information about the process that 
owns that page

• Decreases memory needed to store each 
page table, but increases time needed to 
search the table when a page reference 
occurs

• Use hash table to limit the search to one 
— or at most a few — page-table entries



Inverted Page Table Architecture



Segmentation
• Memory-management scheme that supports user view of memory 

• A program is a collection of segments
• A segment is a logical unit such as:

main program

procedure 

function

method

object

local variables, global variables

common block

stack

symbol table

arrays



User’s View of a Program



Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space



Segmentation Architecture 
• Logical address consists of a two tuple:

<segment-number, offset>,

• Segment table – maps two-dimensional 
physical addresses; each table entry has:
• base – contains the starting physical address where 

the segments reside in memory
• limit – specifies the length of the segment

• Segment-table base register (STBR) points to 
the segment table’s location in memory

• Segment-table length register (STLR) indicates 
number of segments used by a program;

segment number s is legal if s < STLR



Segmentation Architecture (Cont.)
• Protection

• With each entry in segment table associate:
• validation bit = 0  illegal segment
• read/write/execute privileges

• Protection bits associated with segments; 
code sharing occurs at segment level

• Since segments vary in length, memory 
allocation is a dynamic storage-allocation 
problem

• A segmentation example is shown in the 
following diagram



Segmentation Hardware



Example of Segmentation



Example: The Intel Pentium

• Supports both segmentation and segmentation with paging

• CPU generates logical address
• Given to segmentation unit

• Which produces linear addresses 

• Linear address given to paging unit
• Which generates physical address in main memory

• Paging units form equivalent of MMU



Logical to Physical Address Translation in Pentium



Intel Pentium Segmentation



Linear Address in Linux
Broken into four parts:



Three-level Paging in Linux



Virtual-Memory Management



Background
• Virtual memory – separation of user logical memory 

from physical memory.
• Only part of the program needs to be in memory for 

execution
• Logical address space can therefore be much larger than 

physical address space
• Allows address spaces to be shared by several processes
• Allows for more efficient process creation

• Virtual memory can be implemented via:
• Demand paging 
• Demand segmentation



Virtual Memory That is Larger Than Physical Memory





Virtual-address Space



Shared Library Using Virtual Memory



Demand Paging

• Bring a page into memory only when it is needed
• Less I/O needed
• Less memory needed 
• Faster response
• More users

• Page is needed  reference to it
• invalid reference  abort
• not-in-memory  bring to memory

• Lazy swapper – never swaps a page into memory unless page will be 
needed
• Swapper that deals with pages is a pager



Transfer of a Paged Memory to Contiguous Disk Space



Valid-Invalid Bit
• With each page table entry a valid–invalid bit is associated

(v  in-memory, i  not-in-memory)

• Initially valid–invalid bit is set to i on all entries

• Example of a page table snapshot:

• During address translation, if valid–invalid bit in page table entry

is I  page fault

v

v

v

v

i

i

i

….

Frame # valid-invalid bit

page table



Page Table When Some Pages Are Not in Main Memory



Page Fault
• If there is a reference to a page, first reference to 

that page will trap to operating system:
page fault

1.Operating system looks at another table to decide:
• Invalid reference  abort
• Just not in memory

2.Get empty frame
3.Swap page into frame
4.Reset tables
5.Set validation bit = v
6.Restart the instruction that caused the page fault



Page Fault (Cont.)
• Restart instruction

• block move

• auto increment/decrement location



Steps in Handling a Page Fault



Performance of Demand Paging

• Page Fault Rate 0  p  1.0
• if p = 0 no page faults 
• if p = 1, every reference is a fault

• Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead

)



Demand Paging Example

• Memory access time = 200 nanoseconds

• Average page-fault service time = 8 milliseconds

• EAT = (1 – p) x 200 + p (8 milliseconds) 
= (1 – p  x 200 + p x 8,000,000 

= 200 + p x 7,999,800

• If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds. 

This is a slowdown by a factor of 40!!



Process Creation

• Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files (later)



Copy-on-Write

• Copy-on-Write (COW) allows both parent and child processes to 
initially share the same pages in memory

If either process modifies a shared page, only then is the page copied

• COW allows more efficient process creation as only modified pages 
are copied

• Free pages are allocated from a pool of zeroed-out pages



Before Process 1 Modifies Page C



After Process 1 Modifies Page C



What happens if there is no free frame?

• Page replacement – find some page in 
memory, but not really in use, swap it out
• algorithm

• performance – want an algorithm which will 
result in minimum number of page faults

• Same page may be brought into memory 
several times



Page Replacement

• Prevent over-allocation of memory by modifying page-fault service 
routine to include page replacement

• Use modify (dirty) bit to reduce overhead of page transfers – only 
modified pages are written to disk

• Page replacement completes separation between logical memory and 
physical memory – large virtual memory can be provided on a smaller 
physical memory



Need For Page Replacement



Basic Page Replacement
1. Find the location of the desired page on 

disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page 

replacement algorithm to select a 
victim frame

3. Bring  the desired page into the (newly) 
free frame; update the page and frame 
tables

4. Restart the process



Page Replacement



Page Replacement Algorithms
• Want lowest page-fault rate

• Evaluate algorithm by running it on a 
particular string of memory references 
(reference string) and computing the 
number of page faults on that string

• In all our examples, the reference string is 

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5



Graph of Page Faults Versus The Number of Frames



First-In-First-Out (FIFO) Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 3 frames (3 pages can be in memory at a time per process)

• 4 frames

• Belady’s Anomaly: more frames  more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3



FIFO Page Replacement



FIFO Illustrating Belady’s Anomaly



Optimal Algorithm

• Replace page that will not be used for longest period of time

• 4 frames example 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• How do you know this?

• Used for measuring how well your algorithm performs
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Optimal Page Replacement



Least Recently Used (LRU) Algorithm
• Reference string:  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• Counter implementation
• Every page entry has a counter; every time page is 

referenced through this entry, copy the clock into the 
counter

• When a page needs to be changed, look at the counters 
to determine which are to change
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LRU Page Replacement



LRU Algorithm (Cont.)

• Stack implementation – keep a stack of page numbers in a double link 
form:
• Page referenced:

• move it to the top

• requires 6 pointers to be changed

• No search for replacement



Use Of A Stack to Record The Most Recent Page References



LRU Approximation Algorithms
• Reference bit

• With each page associate a bit, initially = 0

• When page is referenced bit set to 1

• Replace the one which is 0 (if one exists)

• We do not know the order, however

• Second chance
• Need reference bit

• Clock replacement

• If page to be replaced (in clock order) has reference bit = 1 then:

• set reference bit 0

• leave page in memory

• replace next page (in clock order), subject to same rules



Second-Chance (clock) Page-Replacement Algorithm



Counting Algorithms
• Keep a counter of the number of references 

that have been made to each page

• LFU Algorithm:  replaces page with smallest 
count

• MFU Algorithm: based on the argument 
that the page with the smallest count was 
probably just brought in and has yet to be 
used



Allocation of Frames
• Each process needs minimum number of pages

• Example:  IBM 370 – 6 pages to handle SS 
MOVE instruction:
• instruction is 6 bytes, might span 2 pages

• 2 pages to handle from

• 2 pages to handle to

• Two major allocation schemes
• fixed allocation

• priority allocation



Fixed Allocation
• Equal allocation – For example, if there are 100 

frames and 5 processes, give each process 20 
frames.

• Proportional allocation – Allocate according to 
the size of process
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Priority Allocation
• Use a proportional allocation scheme using 

priorities rather than size

• If process Pi generates a page fault,
• select for replacement one of its frames

• select for replacement a frame from a process with 
lower priority number



Global vs. Local Allocation
• Global replacement – process selects a 

replacement frame from the set of all 
frames; one process can take a frame 
from another

• Local replacement – each process selects 
from only its own set of allocated frames



Thrashing
• If a process does not have “enough” pages, the 

page-fault rate is very high.  This leads to:
• low CPU utilization

• operating system thinks that it needs to increase the 
degree of multiprogramming

• another process added to the system

• Thrashing  a process is busy swapping pages in 
and out



Thrashing (Cont.)



Demand Paging and Thrashing 

• Why does demand paging work?
Locality model

• Process migrates from one locality to another

• Localities may overlap

• Why does thrashing occur?
 size of locality > total memory size



Locality In A Memory-Reference Pattern



Working-Set Model
•   working-set window  a fixed number of page 

references 
Example:  10,000 instruction

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent 
 (varies in time)
• if  too small will not encompass entire locality
• if  too large will encompass several localities
• if  =  will encompass entire program

• D =  WSSi  total demand frames 

• if D > m  Thrashing

• Policy if D > m, then suspend one of the processes



Working-set model



Keeping Track of the Working Set

• Approximate with interval timer + a reference bit

• Example:  = 10,000
• Timer interrupts after every 5000 time units

• Keep in memory 2 bits for each page

• Whenever a timer interrupts copy and sets the values of all reference bits to 0

• If one of the bits in memory = 1  page in working set

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 1000 time units



Windows XP

• Uses demand paging with clustering. Clustering brings in pages 
surrounding the faulting page

• Processes are assigned working set minimum and working set maximum

• Working set minimum is the minimum number of pages the process is 
guaranteed to have in memory

• A process may be assigned as many pages up to its working set maximum

• When the amount of free memory in the system falls below a threshold, 
automatic working set trimming is performed to restore the amount of 
free memory

• Working set trimming removes pages from processes that have pages in 
excess of their working set minimum


