
Deadlocks

The Deadlock Problem
• A set of blocked processes each holding a resource

and waiting to acquire a resource held by another
process in the set

• Example
• System has 2 disk drives
• P1 and P2 each hold one disk drive and each needs

another one

• Example
• semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)

Bridge Crossing Example

• Traffic only in one direction

• Each section of a bridge can be viewed as a resource

• If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback)

• Several cars may have to be backed up if a deadlock occurs

• Starvation is possible

• Note – Most OSes do not prevent or deal with deadlocks

System Model
• Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:
• request

• use

• release

Deadlock Characterization

• Mutual exclusion: only one process at a time can use
a resource

• Hold and wait: a process holding at least one resource
is waiting to acquire additional resources held by other
processes

• No preemption: a resource can be released only
voluntarily by the process holding it, after that process
has completed its task

• Circular wait: there exists a set {P0, P1, …, P0} of
waiting processes such that P0 is waiting for a resource
that is held by P1, P1 is waiting for a resource that is
held by

P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

Resource-Allocation Graph

• V is partitioned into two types:
• P = {P1, P2, …, Pn}, the set consisting of all the processes

in the system

• R = {R1, R2, …, Rm}, the set consisting of all resource types
in the system

• request edge – directed edge P1  Rj

• assignment edge – directed edge Rj  Pi

A set of vertices V and a set of edges E.

Resource-Allocation Graph (Cont.)

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj
Pi

Pi

Rj

Rj

Example of a Resource Allocation
Graph

Resource Allocation Graph With A Deadlock

Graph With A Cycle But No Deadlock

Basic Facts
• If graph contains no cycles  no

deadlock

• If graph contains a cycle 
• if only one instance per resource type, then

deadlock

• if several instances per resource type,
possibility of deadlock

Methods for Handling Deadlocks
• Ensure that the system will never enter a deadlock

state

• Allow the system to enter a deadlock state and then
recover

• Ignore the problem and pretend that deadlocks
never occur in the system; used by most operating
systems, including UNIX

Deadlock Prevention

• Mutual Exclusion – not required for sharable
resources; must hold for nonsharable resources

• Hold and Wait – must guarantee that whenever a
process requests a resource, it does not hold any
other resources
• Require process to request and be allocated all its

resources before it begins execution, or allow process to
request resources only when the process has none

• Low resource utilization; starvation possible

Restrain the ways request can be made

Deadlock Prevention (Cont.)
• No Preemption –

• If a process that is holding some resources requests
another resource that cannot be immediately allocated to
it, then all resources currently being held are released

• Preempted resources are added to the list of resources for
which the process is waiting

• Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting

• Circular Wait – impose a total ordering of all resource
types, and require that each process requests
resources in an increasing order of enumeration

Deadlock Avoidance

• Simplest and most useful model requires that
each process declare the maximum number
of resources of each type that it may need

• The deadlock-avoidance algorithm
dynamically examines the resource-allocation
state to ensure that there can never be a
circular-wait condition

• Resource-allocation state is defined by the
number of available and allocated resources,
and the maximum demands of the processes

Requires that the system has some additional a priori information

available

Safe State
• When a process requests an available resource,

system must decide if immediate allocation leaves the
system in a safe state

• System is in safe state if there exists a sequence <P1,
P2, …, Pn> of ALL the processes is the systems such
that for each Pi, the resources that Pi can still request
can be satisfied by currently available resources +
resources held by all the Pj, with j < i

• That is:
• If Pi resource needs are not immediately available, then Pi

can wait until all Pj have finished
• When Pj is finished, Pi can obtain needed resources, execute,

return allocated resources, and terminate
• When Pi terminates, Pi +1 can obtain its needed resources,

and so on

Basic Facts
• If a system is in safe state  no

deadlocks

• If a system is in unsafe state 
possibility of deadlock

• Avoidance  ensure that a system will
never enter an unsafe state.

Safe, Unsafe , Deadlock State

Avoidance algorithms
• Single instance of a resource type

• Use a resource-allocation graph

• Multiple instances of a resource type
• Use the banker’s algorithm

Resource-Allocation Graph Scheme

• Claim edge Pi  Rj indicated that process Pj may
request resource Rj; represented by a dashed line

• Claim edge converts to request edge when a
process requests a resource

• Request edge converted to an assignment edge
when the resource is allocated to the process

• When a resource is released by a process,
assignment edge reconverts to a claim edge

• Resources must be claimed a priori in the system

Resource-Allocation Graph

Unsafe State In Resource-Allocation Graph

Resource-Allocation Graph Algorithm

• Suppose that process Pi requests a
resource Rj

• The request can be granted only if
converting the request edge to an
assignment edge does not result in the
formation of a cycle in the resource
allocation graph

Banker’s Algorithm
• Multiple instances

• Each process must a priori claim
maximum use

• When a process requests a resource it
may have to wait

• When a process gets all its resources it
must return them in a finite amount of
time

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] = k,
there are k instances of resource type Rj available

• Max: n x m matrix. If Max [i,j] = k, then process Pi
may request at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then
Pi is currently allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may
need k more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

Safety Algorithm
1. Let Work and Finish be vectors of length m and n,

respectively. Initialize:
Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find and i such that both:
(a) Finish [i] = false
(b) Needi  Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a
safe state

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi. If
Requesti [j] = k then process Pi wants k instances
of resource type Rj

1.If Requesti  Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum
claim

2.If Requesti  Available, go to step 3. Otherwise Pi
must wait, since resources are not available

3.Pretend to allocate requested resources to Pi by
modifying the state as follows:

Available = Available – Request;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

 If safe  the resources are allocated to Pi
 If unsafe  Pi must wait, and the old resource-allocation

state is restored

Example of Banker’s Algorithm
• 5 processes P0 through P4;

3 resource types:

A (10 instances), B (5instances), and C (7 instances)

Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Example (Cont.)
• The content of the matrix Need is defined to be Max –

Allocation

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4,
P2, P0> satisfies safety criteria

Example: P1 Request (1,0,2)
• Check that Request  Available (that is, (1,0,2)  (3,3,2) 

true

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P13 0 2 0 2 0

P2 3 0 1 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

• Executing safety algorithm shows that sequence < P1, P3,
P4, P0, P2> satisfies safety requirement

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

Deadlock Detection

• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme

Single Instance of Each Resource
Type

• Maintain wait-for graph
• Nodes are processes
• Pi  Pj if Pi is waiting for Pj

• Periodically invoke an algorithm that
searches for a cycle in the graph. If there is
a cycle, there exists a deadlock

• An algorithm to detect a cycle in a graph
requires an order of n2 operations, where
n is the number of vertices in the graph

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Several Instances of a Resource Type

• Available: A vector of length m indicates the number
of available resources of each type.

• Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each
process.

• Request: An n x m matrix indicates the current
request of each process. If Request [ij] = k, then
process Pi is requesting k more instances of resource
type. Rj.

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively
Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi  0, then
Finish[i] = false;otherwise, Finish[i] = true

2. Find an index i such that both:
(a) Finish[i] == false

(b) Requesti  Work

If no such i exists, go to step 4

Detection Algorithm (Cont.)
3.Work = Work + Allocationi

Finish[i] = true
go to step 2

4.If Finish[i] == false, for some i, 1  i  n, then the system is in
deadlock state. Moreover, if Finish[i] == false, then Pi is deadlocked

Algorithm requires an order of O(m x n2) operations to detect

whether the system is in deadlocked state

Example of Detection Algorithm

• Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances)

• Snapshot at time T0:
AllocationRequest Available

A B C A B C A B C
P00 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P23 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

Example (Cont.)

• P2 requests an additional instance of type C

Request

A B C

P0 0 0 0

P1 2 0 1

P2 0 0 1

P3 1 0 0

P4 0 0 2

• State of system?
• Can reclaim resources held by process P0, but insufficient resources to fulfill other processes;

requests
• Deadlock exists, consisting of processes P1, P2, P3, and P4

Detection-Algorithm Usage

• When, and how often, to invoke depends on:
• How often a deadlock is likely to occur?

• How many processes will need to be rolled back?
• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily, there may be many cycles
in the resource graph and so we would not be able to tell which of
the many deadlocked processes “caused” the deadlock

Recovery from Deadlock: Process Termination

• Abort all deadlocked processes

• Abort one process at a time until the deadlock cycle is eliminated

• In which order should we choose to abort?
• Priority of the process
• How long process has computed, and how much longer to completion
• Resources the process has used
• Resources process needs to complete
• How many processes will need to be terminated
• Is process interactive or batch?

Recovery from Deadlock: Resource Preemption

• Selecting a victim – minimize cost

• Rollback – return to some safe state, restart
process for that state

• Starvation – same process may always be
picked as victim, include number of rollback in
cost factor

Memory Management Strategies

Background

• Program must be brought (from disk) into
memory and placed within a process for it to be
run

• Main memory and registers are only storage
CPU can access directly

• Register access in one CPU clock (or less)

• Main memory can take many cycles

• Cache sits between main memory and CPU
registers

• Protection of memory required to ensure
correct operation

Base and Limit Registers

• A pair of base and limit registers define the
logical address space

Binding of Instructions and Data to Memory

• Address binding of instructions and data to
memory addresses can happen at three different
stages
• Compile time: If memory location known a priori,

absolute code can be generated; must recompile
code if starting location changes

• Load time: Must generate relocatable code if
memory location is not known at compile time

• Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another. Need hardware support
for address maps (e.g., base and limit registers)

Multistep Processing of a User Program

Logical vs. Physical Address Space
• The concept of a logical address space that is

bound to a separate physical address space
is central to proper memory management
• Logical address – generated by the CPU; also

referred to as virtual address
• Physical address – address seen by the memory

unit

• Logical and physical addresses are the same
in compile-time and load-time address-
binding schemes; logical (virtual) and
physical addresses differ in execution-time
address-binding scheme

Memory-Management Unit (MMU)
• Hardware device that maps virtual to physical

address

• In MMU scheme, the value in the relocation
register is added to every address generated by
a user process at the time it is sent to memory

• The user program deals with logical addresses;
it never sees the real physical addresses

Dynamic relocation using a relocation register

Dynamic Loading
• Routine is not loaded until it is called

• Better memory-space utilization; unused
routine is never loaded

• Useful when large amounts of code are needed
to handle infrequently occurring cases

• No special support from the operating system is
required implemented through program design

Dynamic Linking
• Linking postponed until execution time

• Small piece of code, stub, used to locate the
appropriate memory-resident library routine

• Stub replaces itself with the address of the
routine, and executes the routine

• Operating system needed to check if routine is
in processes’ memory address

• Dynamic linking is particularly useful for
libraries

• System also known as shared libraries

Swapping
• A process can be swapped temporarily out of memory to a backing store, and then

brought back into memory for continued execution

• Backing store – fast disk large enough to accommodate copies of all memory
images for all users; must provide direct access to these memory images

• Roll out, roll in – swapping variant used for priority-based scheduling algorithms;
lower-priority process is swapped out so higher-priority process can be loaded and
executed

• Major part of swap time is transfer time; total transfer time is directly proportional
to the amount of memory swapped

• Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and
Windows)

• System maintains a ready queue of ready-to-run processes which have memory
images on disk

Schematic View of Swapping

Contiguous Allocation
• Main memory usually into two partitions:

• Resident operating system, usually held in low
memory with interrupt vector

• User processes then held in high memory

• Relocation registers used to protect user
processes from each other, and from changing
operating-system code and data
• Base register contains value of smallest physical

address
• Limit register contains range of logical addresses –

each logical address must be less than the limit
register

• MMU maps logical address dynamically

Hardware Support for Relocation and Limit Registers

Contiguous Allocation (Cont)
• Multiple-partition allocation

• Hole – block of available memory; holes of various
size are scattered throughout memory

• When a process arrives, it is allocated memory from
a hole large enough to accommodate it

• Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

Dynamic Storage-Allocation Problem

• First-fit: Allocate the first hole that is big enough

• Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size
• Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must also search
entire list
• Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes

First-fit and best-fit better than worst-fit in terms of

speed and storage utilization

Fragmentation
• External Fragmentation – total memory space

exists to satisfy a request, but it is not contiguous
• Internal Fragmentation – allocated memory may

be slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

• Reduce external fragmentation by compaction
• Shuffle memory contents to place all free memory

together in one large block
• Compaction is possible only if relocation is dynamic, and

is done at execution time
• I/O problem

• Latch job in memory while it is involved in I/O
• Do I/O only into OS buffers

Paging
• Logical address space of a process can be

noncontiguous; process is allocated physical
memory whenever the latter is available

• Divide physical memory into fixed-sized blocks
called frames (size is power of 2, between 512 bytes
and 8,192 bytes)

• Divide logical memory into blocks of same size
called pages

• Keep track of all free frames

• To run a program of size n pages, need to find n free
frames and load program

• Set up a page table to translate logical to physical
addresses

• Internal fragmentation

Address Translation Scheme
• Address generated by CPU is divided into:

• Page number (p) – used as an index into a page table which contains
base address of each page in physical memory

• Page offset (d) – combined with base address to define the physical
memory address that is sent to the memory unit

• For given logical address space 2m and page size 2n

page number page offset

p d

m - n n

Paging Hardware

Paging Model of Logical and Physical Memory

Paging Example

32-byte memory and 4-byte pages

Free Frames

Before allocation After allocation

Implementation of Page Table
• Page table is kept in main memory

• Page-table base register (PTBR) points to the page
table

• Page-table length register (PRLR) indicates size of the
page table

• In this scheme every data/instruction access requires
two memory accesses. One for the page table and one
for the data/instruction.

• The two memory access problem can be solved by the
use of a special fast-lookup hardware cache called
associative memory or translation look-aside buffers
(TLBs)

• Some TLBs store address-space identifiers (ASIDs) in
each TLB entry – uniquely identifies each process to
provide address-space protection for that process

Associative Memory
• Associative memory – parallel search

Address translation (p, d)
• If p is in associative register, get frame # out

• Otherwise get frame # from page table in memory

Page # Frame #

Paging Hardware With TLB

Effective Access Time
• Associative Lookup =  time unit

• Assume memory cycle time is 1 microsecond

• Hit ratio – percentage of times that a page
number is found in the associative registers;
ratio related to number of associative registers

• Hit ratio = 

• Effective Access Time (EAT)

EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 

Memory Protection
• Memory protection implemented by

associating protection bit with each frame

• Valid-invalid bit attached to each entry in
the page table:
• “valid” indicates that the associated page is in

the process’ logical address space, and is thus a
legal page

• “invalid” indicates that the page is not in the
process’ logical address space

Valid (v) or Invalid (i) Bit In A Page
Table

Shared Pages
• Shared code

• One copy of read-only (reentrant) code shared
among processes (i.e., text editors, compilers,
window systems).

• Shared code must appear in same location in
the logical address space of all processes

• Private code and data
• Each process keeps a separate copy of the code

and data
• The pages for the private code and data can

appear anywhere in the logical address space

Shared Pages Example

Structure of the Page Table
• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables

Hierarchical Page Tables
• Break up the logical address space into multiple

page tables

• A simple technique is a two-level page table

Two-Level Page-Table Scheme

Two-Level Paging Example
• A logical address (on 32-bit machine with 1K page size) is divided into:

• a page number consisting of 22 bits

• a page offset consisting of 10 bits

• Since the page table is paged, the page number is further divided into:

• a 12-bit page number

• a 10-bit page offset

• Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement within the page
of the outer page table

page number page offset

pi p2 d

12 10 10

Address-Translation Scheme

Three-level Paging Scheme

Hashed Page Tables
• Common in address spaces > 32 bits

• The virtual page number is hashed into a page
table
• This page table contains a chain of elements hashing

to the same location

• Virtual page numbers are compared in this
chain searching for a match
• If a match is found, the corresponding physical

frame is extracted

Hashed Page Table

Inverted Page Table
• One entry for each real page of memory

• Entry consists of the virtual address of the
page stored in that real memory location,
with information about the process that
owns that page

• Decreases memory needed to store each
page table, but increases time needed to
search the table when a page reference
occurs

• Use hash table to limit the search to one
— or at most a few — page-table entries

Inverted Page Table Architecture

Segmentation
• Memory-management scheme that supports user view of memory

• A program is a collection of segments
• A segment is a logical unit such as:

main program

procedure

function

method

object

local variables, global variables

common block

stack

symbol table

arrays

User’s View of a Program

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

Segmentation Architecture
• Logical address consists of a two tuple:

<segment-number, offset>,

• Segment table – maps two-dimensional
physical addresses; each table entry has:
• base – contains the starting physical address where

the segments reside in memory
• limit – specifies the length of the segment

• Segment-table base register (STBR) points to
the segment table’s location in memory

• Segment-table length register (STLR) indicates
number of segments used by a program;

segment number s is legal if s < STLR

Segmentation Architecture (Cont.)
• Protection

• With each entry in segment table associate:
• validation bit = 0  illegal segment
• read/write/execute privileges

• Protection bits associated with segments;
code sharing occurs at segment level

• Since segments vary in length, memory
allocation is a dynamic storage-allocation
problem

• A segmentation example is shown in the
following diagram

Segmentation Hardware

Example of Segmentation

Example: The Intel Pentium

• Supports both segmentation and segmentation with paging

• CPU generates logical address
• Given to segmentation unit

• Which produces linear addresses

• Linear address given to paging unit
• Which generates physical address in main memory

• Paging units form equivalent of MMU

Logical to Physical Address Translation in Pentium

Intel Pentium Segmentation

Linear Address in Linux
Broken into four parts:

Three-level Paging in Linux

Virtual-Memory Management

Background
• Virtual memory – separation of user logical memory

from physical memory.
• Only part of the program needs to be in memory for

execution
• Logical address space can therefore be much larger than

physical address space
• Allows address spaces to be shared by several processes
• Allows for more efficient process creation

• Virtual memory can be implemented via:
• Demand paging
• Demand segmentation

Virtual Memory That is Larger Than Physical Memory



Virtual-address Space

Shared Library Using Virtual Memory

Demand Paging

• Bring a page into memory only when it is needed
• Less I/O needed
• Less memory needed
• Faster response
• More users

• Page is needed  reference to it
• invalid reference  abort
• not-in-memory  bring to memory

• Lazy swapper – never swaps a page into memory unless page will be
needed
• Swapper that deals with pages is a pager

Transfer of a Paged Memory to Contiguous Disk Space

Valid-Invalid Bit
• With each page table entry a valid–invalid bit is associated

(v  in-memory, i  not-in-memory)

• Initially valid–invalid bit is set to i on all entries

• Example of a page table snapshot:

• During address translation, if valid–invalid bit in page table entry

is I  page fault

v

v

v

v

i

i

i

….

Frame # valid-invalid bit

page table

Page Table When Some Pages Are Not in Main Memory

Page Fault
• If there is a reference to a page, first reference to

that page will trap to operating system:
page fault

1.Operating system looks at another table to decide:
• Invalid reference  abort
• Just not in memory

2.Get empty frame
3.Swap page into frame
4.Reset tables
5.Set validation bit = v
6.Restart the instruction that caused the page fault

Page Fault (Cont.)
• Restart instruction

• block move

• auto increment/decrement location

Steps in Handling a Page Fault

Performance of Demand Paging

• Page Fault Rate 0  p  1.0
• if p = 0 no page faults
• if p = 1, every reference is a fault

• Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead

)

Demand Paging Example

• Memory access time = 200 nanoseconds

• Average page-fault service time = 8 milliseconds

• EAT = (1 – p) x 200 + p (8 milliseconds)
= (1 – p x 200 + p x 8,000,000

= 200 + p x 7,999,800

• If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

Process Creation

• Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files (later)

Copy-on-Write

• Copy-on-Write (COW) allows both parent and child processes to
initially share the same pages in memory

If either process modifies a shared page, only then is the page copied

• COW allows more efficient process creation as only modified pages
are copied

• Free pages are allocated from a pool of zeroed-out pages

Before Process 1 Modifies Page C

After Process 1 Modifies Page C

What happens if there is no free frame?

• Page replacement – find some page in
memory, but not really in use, swap it out
• algorithm

• performance – want an algorithm which will
result in minimum number of page faults

• Same page may be brought into memory
several times

Page Replacement

• Prevent over-allocation of memory by modifying page-fault service
routine to include page replacement

• Use modify (dirty) bit to reduce overhead of page transfers – only
modified pages are written to disk

• Page replacement completes separation between logical memory and
physical memory – large virtual memory can be provided on a smaller
physical memory

Need For Page Replacement

Basic Page Replacement
1. Find the location of the desired page on

disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page

replacement algorithm to select a
victim frame

3. Bring the desired page into the (newly)
free frame; update the page and frame
tables

4. Restart the process

Page Replacement

Page Replacement Algorithms
• Want lowest page-fault rate

• Evaluate algorithm by running it on a
particular string of memory references
(reference string) and computing the
number of page faults on that string

• In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Graph of Page Faults Versus The Number of Frames

First-In-First-Out (FIFO) Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 3 frames (3 pages can be in memory at a time per process)

• 4 frames

• Belady’s Anomaly: more frames  more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

FIFO Page Replacement

FIFO Illustrating Belady’s Anomaly

Optimal Algorithm

• Replace page that will not be used for longest period of time

• 4 frames example 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• How do you know this?

• Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5

Optimal Page Replacement

Least Recently Used (LRU) Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• Counter implementation
• Every page entry has a counter; every time page is

referenced through this entry, copy the clock into the
counter

• When a page needs to be changed, look at the counters
to determine which are to change

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

LRU Page Replacement

LRU Algorithm (Cont.)

• Stack implementation – keep a stack of page numbers in a double link
form:
• Page referenced:

• move it to the top

• requires 6 pointers to be changed

• No search for replacement

Use Of A Stack to Record The Most Recent Page References

LRU Approximation Algorithms
• Reference bit

• With each page associate a bit, initially = 0

• When page is referenced bit set to 1

• Replace the one which is 0 (if one exists)

• We do not know the order, however

• Second chance
• Need reference bit

• Clock replacement

• If page to be replaced (in clock order) has reference bit = 1 then:

• set reference bit 0

• leave page in memory

• replace next page (in clock order), subject to same rules

Second-Chance (clock) Page-Replacement Algorithm

Counting Algorithms
• Keep a counter of the number of references

that have been made to each page

• LFU Algorithm: replaces page with smallest
count

• MFU Algorithm: based on the argument
that the page with the smallest count was
probably just brought in and has yet to be
used

Allocation of Frames
• Each process needs minimum number of pages

• Example: IBM 370 – 6 pages to handle SS
MOVE instruction:
• instruction is 6 bytes, might span 2 pages

• 2 pages to handle from

• 2 pages to handle to

• Two major allocation schemes
• fixed allocation

• priority allocation

Fixed Allocation
• Equal allocation – For example, if there are 100

frames and 5 processes, give each process 20
frames.

• Proportional allocation – Allocate according to
the size of process

m
S

s
pa

m

sS

ps

i
ii

i

ii









 for allocation

frames of number total

 process of size

5964
137

127

564
137

10

127

10

64

2

1

2











a

a

s

s

m

i

Priority Allocation
• Use a proportional allocation scheme using

priorities rather than size

• If process Pi generates a page fault,
• select for replacement one of its frames

• select for replacement a frame from a process with
lower priority number

Global vs. Local Allocation
• Global replacement – process selects a

replacement frame from the set of all
frames; one process can take a frame
from another

• Local replacement – each process selects
from only its own set of allocated frames

Thrashing
• If a process does not have “enough” pages, the

page-fault rate is very high. This leads to:
• low CPU utilization

• operating system thinks that it needs to increase the
degree of multiprogramming

• another process added to the system

• Thrashing  a process is busy swapping pages in
and out

Thrashing (Cont.)

Demand Paging and Thrashing

• Why does demand paging work?
Locality model

• Process migrates from one locality to another

• Localities may overlap

• Why does thrashing occur?
 size of locality > total memory size

Locality In A Memory-Reference Pattern

Working-Set Model
•   working-set window  a fixed number of page

references
Example: 10,000 instruction

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent
 (varies in time)
• if  too small will not encompass entire locality
• if  too large will encompass several localities
• if  =  will encompass entire program

• D =  WSSi  total demand frames

• if D > m  Thrashing

• Policy if D > m, then suspend one of the processes

Working-set model

Keeping Track of the Working Set

• Approximate with interval timer + a reference bit

• Example:  = 10,000
• Timer interrupts after every 5000 time units

• Keep in memory 2 bits for each page

• Whenever a timer interrupts copy and sets the values of all reference bits to 0

• If one of the bits in memory = 1  page in working set

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 1000 time units

Windows XP

• Uses demand paging with clustering. Clustering brings in pages
surrounding the faulting page

• Processes are assigned working set minimum and working set maximum

• Working set minimum is the minimum number of pages the process is
guaranteed to have in memory

• A process may be assigned as many pages up to its working set maximum

• When the amount of free memory in the system falls below a threshold,
automatic working set trimming is performed to restore the amount of
free memory

• Working set trimming removes pages from processes that have pages in
excess of their working set minimum

