Introduction

Convection Heat Transfer

= the controlling equation for convection is Newton's Law of Cooling
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The following table gives the range of heat transfer coefficient expected for different convection
mechanisms and fluid types.

Process h [W/(m2 - K)]

Natural * gases 3 - 20
\Co vection
\ = water 60 - 900

Forced = gases 30 - 300
Convection

e 0ils 60 - 1 800

= water 100 -1 500

Boiling
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= water 3 000 - 100 000
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= steam 3 000 - 100 000
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Dimensionless Groups

It is common practice to reduce the total number of functional variables by forming dimensionless
groups consisting of relevant thermophysical properties, geometry, boundary and flow conditions.

Prandtl number: Pr = v/a where 0 < Pr <  (Pr _, o for liquid metals and Pr _,

oo for viscous oils). A measure of ratio between the diffusion of momentum to the diffusion
of heat.

Reynolds number: Re = pU)| /u = U} /v (forced convection). A measure of the balance
between the inertial forces and the viscous forces.

Peclet number: Pe = UL/a = RePr



Grashof number: Gr = gB(Tw — Ty)L3/¥? (natural convection)
Rayleigh number: Ra = gB(Tw — Tf)L3/(a-v) = GrPr

Nusselt number: Nu = h /Mg This can be considered as the dimensionless heat transfer
coefficient.

Stanton number: St = h/(UpCp) = Nu/(RePr)

Forced Convection

The simplest forced convection configuration to consider is the flow of mass and heat near a flat
plate as shown below.
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= as Reynolds number increases the flow has a tendency to become more chaotic resulting in
disordered motion known as turbulent flow

— transition from laminar to turbulent is called the critical Reynolds number, Recr
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Reer =
v

— for flow over a flat plate Resr ~ 500, 000

Boundary Layers

Velocity Boundary Layer

« the region of fluid flow over the plate where viscous effects dominate is called the velocity
or hydrodynamic boundary layer
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= the velocity of the fluid progressively increases away from the wall until we reach approxi-
mately 0.99 U. which is denoted as the &, the velocity boundary layer thickness.

Thermal Boundary Laver

 the thermal boundary layer is arbitrarily selected as the locus of points where

Ty
= 0.99
Taa - Tw

Flow Over Plates

We will use empirical correlations based on experimental data where
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1. Laminar Boundary Layer Flow, Isothermal (UWT)

The local values of the skin friction and the Nusselt number are given as

0.664
Rel/2

Cyx

Nu, = 0.332 Rejc/2 Pr'3| = local, laminar, UWT, Pr = 0.6

An average value of the skin friction coefficient and the heat transfer coefficient for the full extent
of the plate can be obtained by using the mean value theorem.

1.328

Cr= 12
Re;

Nu;, = h’% = 0.664 Relf/2 Prid| = average, laminar, UWT, Pr = 0.6
f

For low Prandtl numbers, i.e. liquid metals

Nu, = 0.565 Re'/? Pr'/?| = local, laminar, UWT, Pr < 0.6

2. Turbulent Boundary Layer Flow, Isothermal (UWT)

The local skin friction is given as

Crx = 29592 | 5 jocal, turbulent, UWT, Pr > 0.6
’ Reo.z
X

local, turbulent, UWT,
Nu, = 0.0296 Re2® Pr'’| = 0.6 < Pr < 100, 500,000 < Rex < 107

Cr, = 0.074 |, average, turbulent, UWT, Pr = 0.6
’ ReO.Z
X
average, turbulent, UWT,
Nur = 0.037 Re%s Pr'/A| = 0.6 < Pr < 100, 500,000 < Rex < 10’




3. Combined Laminar and Turbulent Boundary Layer Flow, Isothermal (UWT)

average, combined, UWT,

niL 0.6 < Pr < 60,

Nuy, = - (0.037 Rer” — 871) Pr'°| = 500,000 < Re < 107

4. Laminar Boundary Layer Flow, Isoflux (UWF)

Nux = 0.453 Re;c/2 Pr'3| = local, laminar, UWF, Pr = 0.6

5. Turbulent Boundary Layer Flow, Isoflux (UWF)

Nu, = 0.0308 Re:/'r’ PrR| = local, turbulent, UWF, Pr = 0.6
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Example 1: Hot engine oil with a bulk temperature of 60 "C flows over a horizontal, flat

plate 5 m long with a wall temperature of 20 "C. If the fluid has a free stream velocity of

2 m/s, determine the heat transfer rate from the oil to the plate if the plate is assumed to be
of unit width.
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Flow Over Cylinders and Spheres

1. Boundary Layer Flow Over Circular Cylinders, Isothermal (UWT)

The Churchill-Bernstein (1977) correlation for the average Nusselt number for
long (L/D > 100) cylinders is

0 0
0.62 Rel?P /A Rep %8 "°
+ 1y —
[1 + (0.4/Pr)?/3]1/4 282, 000

Nup = 0.3

= average, UWT, Rep < 107, O0<Pr<x, Rep-Pr > o0.2

All fluid properties are evaluated at Ty = (Tw + T)/2.

2. Boundary Layer Flow Over Non-Circular Cylinders, Isothermal (UWT)

The empirical formulations of Zhukauskas and Jakob given in Table 12-3 are commonly used,
where

hD

Nup ~ 7} = C Rep'Pr1/3| = see Table 12-3 for conditions

3. Boundary Layer Flow Over a Sphere, Isothermal (UWT)

For flow over an isothermal sphere of diameter D

average, UWT,

Yi/a 0.7 < Pr < 380

h i
U
Nup = 2+ 0.4 Relf? + 0.06 Rey® Pro4 " = 3.5 < Rep < 80,000
S

where the dynamic viscosity of the fluid in the bulk flow, u« is based on the free stream tem-
perature, T» and the dynamic viscosity of the fluid at the surface, us, is based on the surface
temperature, Ts. All other properties are based on T'w.
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Example 2: An electric wire with a 1 mum diameter and a wall temperature of 325 K is
cooled by air in cross flow with a free stream temperature of 275 K. Determine the air
velocity required to maintain a steady heat loss per unit length of 70 W/m.

HREE

air @ Tee & Uy, Po=1 atm

Internal Flow

The mean velocity and Reynolds number are given as
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Hvdrodynamic (Velocity) Boundary Laver

= the hydrodynamic boundary layer thickness can be approximated as

|
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Umx
o(x) = 5x = Re-
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* the hydrodynamic entry length can be approximated as

Lnr = 0.05RepD (laminar flow)

Thermal Boundarv Laver
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 the thermal entry length can be approximated as
(laminar flow)

Lt = 0.05RepPrD = PrLy

= for turbulent flow Lp = L; = 10D

Wall Boundary Conditions

1. Uniform Wall Heat Flux: Since the wall flux q "w is uniform, the local mean temperature de-

noted as
q A
mC,

Tm,x — Tm it

will increase in a linear manner with respect to x.
The surface temperature can be determined from

ﬂu=Tm+i‘v
h



m,in

2. Isothermal Wall: The outlet temperature of the tube is
Tout = Tw — (Tw — Tin) exp[ - hA/(me)]

Because of the exponential temperature decay within the tube, it is common to present the
mean temperature from inlet to outlet as a log mean temperature difference where

Q = hAATH
AT Tout — Ti y — Tout — Ti

" g Do~ Tow  In(ATou/ATin)

Tw - Tin
.
T. =constant
! . ITe=T,-T
\ w m,out
e —
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1. Laminar Flow in Circular Tubes, Isothermal (UWT) and Isoflux (UWF)

For laminar flow where Rep < 2300

‘Nun = 3,66‘ = fully developed, laminar, UWT, L > L; & Ln

‘ Nup = 4.36 ‘ = fully developed, laminar, UWF, L > L{ & Ln

developing laminar flow, UWT,
Pr > 0.5

= L < Lp or L <Ly

v Y
RepPrD 3 g, ©1

Nup = 1.86
L Us

For non-circular tubes the hydraulic diameter, Dn = 4A¢/P can be used in conjunction with
Table 10-4 to determine the Reynolds number and in turn the Nusselt number.

In all cases the fluid properties are evaluated at the mean fluid temperature given as

1
Trean = ; (Tm,in + Tm,out)

except for ps which is evaluated at the wall temperature, Ts.

2. Turbulent Flow in Circular Tubes, Isothermal (UWT) and Isoflux (UWF)

For turbulent flow where Rep = 2300 the Dittus-Boelter equation (Eq. 13-68) can be used

turbulent flow, UWT or UWF,

0.7 < Pr <160

Rep > 2,300

n = 0.4 heating
Nup = 0.023 Recl’)-8 Pr*| = n=0.3 cooling

For non-circular tubes, again we can use the hydraulic diameter, Dn = 4A¢/P to determine both
the Reynolds and the Nusselt numbers.

In all cases the fluid properties are evaluated at the mean fluid temperature given as

1
Tmean = ; (Tm,in + Tm,out)
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Natural Convection

What Drives Natural Convection?

= fluid flow is driven by the effects of buoyancy

Natural Convection Over Surfaces
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= note that unlike forced convection, the velocity at the edge of the boundary layer goes to zero
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Natural Convection Heat Transfer Correlations

The general form of the Nusselt number for natural convection is as follows:
Nu = f(Gr, Pr) = CGrmPrn where Ra = Gr - Pr

e C depends on geometry, orientation, type of flow, boundary conditions and choice of char-
acteristic length.

= m depends on type of flow (laminar or turbulent)
= n depends on the type of fluid and type of flow

e Table 14-1 should be used to find Nusselt number for various combinations of geometry and
boundary conditions

— for ideal gases 8 = 1/T-, (1/K)
— all fluid properties are evaluated at the film temperature, Ty = (Tw + Tw)/2.

Natural Convection From Plate Fin Heat Sinks

The average Nusselt number for an isothermal plate fin heat sink with natural convection can be
determined using

hs 6 s
Nus = 2 __5[76 + 2.873

Iy (RasS/L)? (RasS/L)%5
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A basic optimization of the fin spacing can be obtained as follows: For isothermal fins with t < .S
'

s’ "4 L

Sopt = 2.714 —— = 2,71
opt = 2714 Ras 714 Ral

with

gp(Tw T HL3
) Pr
V2

ap =
The corresponding value of the heat transfer coefficient is
h = 1.307kf/Sopt

All fluid properties are evaluated at the film temperature.

' I
Example 3: Find the optimum fin spacing, Sopt and the rate of heat transfer, Q for the
following plate fin heat sink cooled by natural convection.

quiescent air, T

Given:
W = 120mm H = 24mm
L = 18 mm t = 1mm
T, = 80°C T. = 25°C
P. = 1atm fluid = air

Find: Sop: and the corresponding heat transfer, Q

AN J
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