
Fundamentals
A Java Exception is an object that describes an

exceptional condition that has occurred in a piece of

code.

Java Exception Handling is managed via five

keywords :

1) try

2) catch

3) throw

4) throws

5) finally

int data = 10/0
Exception

Object

An object

of

exception

class is

thrown.

Is

handled

?

Rest of the

code is

executed.

JVM

1) Prints out exception

description

2) Prints the stack trace

3) Terminate the program

YesNo

Try – Catch Block

try {

//statements that may cause an exception

}

catch (excetion(type) e(object))

{

//error handling code

}

Multiple Catch
try { // Protected Code

}

catch (ExceptionType1 e1) {

// catch block

}

catch (ExceptionType1 e1) {

// catch block

}

……….

SEquence of Events

Preceding Step

Try block

statement

Unmatched catch

Matching catch

Unmatched catch

Next step

class Example2 {

public static void main (String [] args) {

try { int a [] = new int [7] ;

a [4] = 30 / 0 ; }

catch (ArithmeticException e) {

System.out.println (“Warning : ArithmeticException”); }

catch (ArrayIndexOutOfBoundsException e) {

System.out.println(“Warning : ArrayIndexOutOfBoundsException”);

catch (Exception e) {

System.out.println(“Warning : Some other exception”); }

System.out.println (“Out of try-catch block ….”);

}

}

Nested try catch

a) One try-catch block can be present in the another try’s

body . This is called Nesting of try catch blocks .

b) Each time a try catch block does not have a catch handler

for a particular exception, the stack is unwound and the

next try block’s catch handlers are inspected for a match.

c) If no catch block matches, then the java runtime system

will handle the exception.

Syntax of nested try catch
try

{ statement 1;

try {

statement 2; }

catch (Exception e1) {

// Exception Message }

catch (Exception e2) // catch of parent try block

{ //Exception Message

}

What is finally block

a) A finally statement must be associated with a try

statement.

b) It identifies a block of statement that needs to be

executed regardless of whether or not an exception

occurs within the try block.

c) It will run regardless of whether an exception was thrown

and handled by the try and catch parts of the block.

Try – catch – finally

try {

……..

}

Finally {

……..

}

try {

……

}

Catch (…) {

……..

}

Finally {

}

Program Code

Exception

Occurred?

Exception

Handled?

Yes

Finally block is executed

No

YesNo

SEquence of Events

Preceding Step

Try block

statement

Unmatched catch

Matching catch

Unmatched catch

Next step

finally

class Simple {

public static void main (String [] args)

try {

int data = 25 / 0 ;

System.out.println(data);

}

catch (ArithmeticException e) {

System.out.prinltn(e);

}

finally {

System.out.println(“finally block is always executed”);

}

System.out.println(“ rest of the code…..”);

}}

Throwing our own exceptions
throw keyword

a) In java we have already defined exception classes such as

ArithmeticException , NullPointerException etc.

b) These exceptions are implicitly thrown by JVM.

c) The throw keyword is used to explicitly throw an exception.

d) These exceptions are known as user-defined exceptions.

Syntax of throw keyword

Throw new AnyThrowableInstance ;

IOException e = new IOException();

throw e;

class MyException extends Exception {

public MyException (String msg) {

super(msg);

}

}

class TestMyException {

public static void main (String [] args) {

int age = -2 ;

try {

if (age < 0)

throw new MyException (“Age can’t be less than zero”);

}

catch (MyException e) {

e.printStackTrace();

}

}

Throws keyword

a) The throws keyword is used to declare an exception.

b) It gives an information to the programmer that there may occur

an exception.

c) So it is better for the programmer to provide the exception

handling code so that normal flow can be maintained.

Syntax of throws keyword

void method_name () throws exception_class_name {

…… }

import java.io.* ;

class M {

void method () throws IOException {

throw new IOException (“device error”);

}

}

class Test {

public static void main (String [] args) throws IOException {

Test t = new Test () ;

t.method () ;

System.out.println (“normal flow…..”);

}

}

Comparison

throw keyword

 throw is used to explicitly
throw an exception.

 checked exception cannot
be propagated without
throws.

 throw is followed by an
instance.

 throw is used within the
method.

 you cannot throw multiple
exception.

throws keyword

 throws is used to declare an
exception.

 checked exception can be
propagated with throws.

 throws is followed by class.

 throws is used with the
method signature.

 you can declare multiple
exception.

 e.g. public void method ()
throws IOException,
SQLException.

