
Frequent Itemset Mining Methods

Apriori Algorithm: Finding Frequent Itemsets by Confined Candidate generation

The name of the algorithm is based on the fact that the algorithm uses prior knowledge of

frequent itemset properties. Apriori employs an iterative approach known as a level-wise

search, where k-itemsets are used to explore (k+1)-itemsets. First, the set of frequent 1-

itemsets is found by scanning the database to accumulate the count for each item, and

collecting those items that satisfy minimum support. The resulting set is denoted by L1. Next,

L1 is used to find L2, the set of frequent 2-itemsets, which is used to find L3, and so on, until

no more frequent k-itemsets can be found. The finding of each Lk requires one full scan of the

database.

To improve the efficiency of the level-wise generation of frequent itemsets, an important

property called the Apriori property is used to reduce the search space.

Apriori property: All nonempty subsets of a frequent itemset must also be frequent.

The Apriori property is based on the following observation. By definition, if an itemset I does

not satisfy the minimum support threshold, min sup, then I is not frequent, that is, P(I) < min

sup. If an item A is added to the itemset I, then the resulting itemset (i.e., IA) cannot occur

more frequently than I. Therefore, I A is not frequent either, that is, P(I  A) < min sup.

This property belongs to a special category of properties called antimonotonicity in the

sense that if a set cannot pass a test, all of its supersets will fail the same test as well. It is

called antimonotonicity because the property is monotonic in the context of failing a test.

A two-step process is followed, consisting of join and prune actions.

1. The join step: To find Lk, a set of candidate k-itemsets is generated by joining Lk-1

with itself. This set of candidates is denoted Ck. Let l1 and l2 be itemsets in Lk-1. The

notation li[j] refers to the jth item in li. For efficient implementation, Apriori assumes

that items within a transaction or itemset are sorted in lexicographic order. For the (k-

1)-itemset, this means that the items are sorted such that li[1] < li[2] < ...< li[k -1].

The join, Lk-1 Lk-1, is performed, where members of Lk-1 are joinable if their first (k -

2) items are in common. That is, members l1 and l2 of Lk-1 are joined if (l1[1] =

l2[1])^.l1[2] = l2[2])^...^(l1[k -2] = l2[k 2]) ^(l1[k -1] < l2[k -1]). The condition l1[k

􀀀1] < l2[k 􀀀1] simply ensures that no duplicates are generated. The resulting itemset

formed by joining l1 and l2 is {l1[1], l1[2], : : : , l1[k -2], l1[k -1], l2[k -1]}.

2. The prune step: Ck is a superset of Lk, that is, its members may or may not be

frequent, but all of the frequent k-itemsets are included in Ck. A database scan to

determine the count of each candidate in Ck would result in the determination of Lk

(i.e., all candidates having a count no less than the minimum support count are

frequent by definition, and therefore belong to Lk). Ck, however, can be huge, and so

this could involve heavy computation. To reduce the size of Ck, the Apriori property

is used as follows. Any (k -1)-itemset that is not frequent cannot be a subset of a

frequent k-itemset. Hence, if any (k -1)-subset of a candidate k-itemset is not in Lk-1,

then the candidate cannot be frequent either and so can be removed from Ck.

