
Banker’s Algorithm
• Multiple instances

• Each process must a priori claim maximum use

• When a process requests a resource it may have to wait

• When a process gets all its resources it must return them
in a finite amount of time

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] = k, there are k
instances of resource type Rj available

• Max: n x m matrix. If Max [i,j] = k, then process Pi may request
at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently
allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k more
instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

Safety Algorithm
1. Let Work and Finish be vectors of length m and n,

respectively. Initialize:
Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find and i such that both:
(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi. If Requesti [j] = k
then process Pi wants k instances of resource type Rj

1. If Requesti  Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim

2. If Requesti  Available, go to step 3. Otherwise Pi must wait, since
resources are not available

3. Pretend to allocate requested resources to Pi by modifying the
state as follows:

Available = Available – Request;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

 If safe  the resources are allocated to Pi

 If unsafe  Pi must wait, and the old resource-allocation state is restored

Example of Banker’s Algorithm
• 5 processes P0 through P4;

3 resource types:

A (10 instances), B (5instances), and C (7 instances)

Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Example (Cont.)
• The content of the matrix Need is defined to be Max – Allocation

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria

Example: P1 Request (1,0,2)
• Check that Request  Available (that is, (1,0,2)  (3,3,2)  true

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P13 0 2 0 2 0

P2 3 0 1 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

• Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>
satisfies safety requirement

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

