
Banker’s Algorithm
• Multiple instances

• Each process must a priori claim maximum use

• When a process requests a resource it may have to wait

• When a process gets all its resources it must return them
in a finite amount of time

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] = k, there are k
instances of resource type Rj available

• Max: n x m matrix. If Max [i,j] = k, then process Pi may request
at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently
allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k more
instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

Safety Algorithm
1. Let Work and Finish be vectors of length m and n,

respectively. Initialize:
Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find and i such that both:
(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi. If Requesti [j] = k
then process Pi wants k instances of resource type Rj

1. If Requesti Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim

2. If Requesti Available, go to step 3. Otherwise Pi must wait, since
resources are not available

3. Pretend to allocate requested resources to Pi by modifying the
state as follows:

Available = Available – Request;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

 If safe the resources are allocated to Pi

 If unsafe Pi must wait, and the old resource-allocation state is restored

Example of Banker’s Algorithm
• 5 processes P0 through P4;

3 resource types:

A (10 instances), B (5instances), and C (7 instances)

Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Example (Cont.)
• The content of the matrix Need is defined to be Max – Allocation

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria

Example: P1 Request (1,0,2)
• Check that Request Available (that is, (1,0,2) (3,3,2) true

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P13 0 2 0 2 0

P2 3 0 1 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

• Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>
satisfies safety requirement

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

