
Microarrays 



• 1. INTRODUCTION 

• Functional genomics involves the analysis of large 
datasets of information derived from various biological 
experiments. One such type of large-scale experiment 
involves monitoring the expression levels of thousands 
of genes simultaneously under a particular condition, 

     called gene expression analysis.  

• Microarray technology makes this possible and the 
quantity of data generated from each experiment is 
enormous, dwarfing the amount of data generated by 
genome sequencing projects 





• If the gene was expressed to the same extent in 
both conditions, one would find the spot to be 
yellow, and if the gene was not expressed in both 
conditions, the spot would be black. 

•  Thus, what is seen at the end of the 
experimental stage is an image of the microarray, 
in which each spot that corresponds to a gene 
has an associated fluorescence value 
representing the relative expression level of that 
gene. 



OVERVIEW OF IMAGE PROCESSING, 

TRANSFORMATION AND NORMALIZATION 

 

Image processing involves the following steps: 

• 1. Identification of the spots and 
distinguishing them from spurious signals. 

• 2. Determination of the spot area to be 
surveyed, determination of the local region to 
estimate background hybridization. 

• 3. Reporting summary statistics and assigning 
spot intensity after subtracting for background 
intensity. 



• Most approaches use the spot median value, with the background 
median value subtracted from it, as the metric to represent spot 
intensity. 

• The median intensity is a value where half the measured pixels have 
intensities greater than this value and the other half of the 
measured pixels have intensities less than this value 

• The other method is to use total intensity values, which has an 

• advantage of being insensitive to misidentification of spots (as few 
more pixels with zero value in the background will not affect the 
total intensity), but has a disadvantage of being prone to be skewed 
by a few pixels with extreme intensity values 



• Another consideration in image processing is the 
number of pixels to be included for 

• measurement in the spot image. For many 
scanners, the default pixel size is 10μm. This 
means that an average spot of diameter of 
200μm will have ~314 pixels.  

• However, for a smaller spot diameter, it is better 
to use a smaller pixel size to ensure enough pixels 
are sampled. Most scanners now allow the pixel 
size of 5μm. 



2.2 Expression ratios: the primary 

comparison 

 • We saw that the relative expression level for a 

gene can be measured as the amount of red 

or green light emitted after excitation. The 

most common metric used to relate this 

information is called expression ratio. It is 

denoted here as Tk and defined as: 

 

 



• For each gene k on the array, where Rk represents the 

spot intensity metric for the test sample and Gk 

represents the spot intensity metric for the reference 

sample. As mentioned above, the spot intensity metric 

for each gene can be represented as a total intensity 

value or a background subtracted median value. If we 

choose the median pixel value, then the median 

expression ratio for a given spot is: 



• where R median
spot and R median background 

 are the median intensity values for the spot and 

background respectively, for the test sample. 



2.3 Transformations of the expression 

ratio 

 
• The expression ratio is a relevant way of representing expression 

differences in a very intuitive manner.  

• For example, genes that do not differ in their expression level will 

have an expression ratio of 1.  

• However, this representation may be unhelpful when one has to  

represent up-regulation and down-regulation. For example, a gene 

that is up-regulated by a factor of 4 has an expression ratio of 4 

(R/G = 4G/G = 4). However, for the case where a gene is down 

regulated by a factor of 4, the expression ratio becomes 0.25 (R/G 

= R/4R = 1/4). Thus up-regulation is blown up and mapped 

between 1 and infinity, whereas down-regulation is compressed 

and mapped between 0 and 1. 



 

 

 

• To eliminate this inconsistency in the mapping 

interval, one can perform two kinds of 

transformations of the expression ratio, 

namely, inverse transformation and 

logarithmic transformation. 



Inverse or reciprocal transformation 

 

 

 

 

 

However, this method also has a problem in that the mapping space is 

discontinuous between 

–1 and +1 and hence becomes a problem in most mathematical analyses 

downstream of 

this step. 



Logarithmic transformation 

• A better transformation procedure is to take the 
logarithm base 2 value of the expression ratio (i.e. log2 
(expression ratio)).  

• This has the major advantage that it treats differential 
up-regulation and down-regulation equally, and also 
has a continuous mapping space.  

• For example, if the expression ratio is 1, then log2 (1) 
equals 0 represents no change in expression. If the 
expression ratio is 4, then log2 (4) equals +2 and for 
expression ratio of log2 (1/4) equals -2. Thus, in this 
transformation the mapping space is continuous and 
upregulation and down-regulation are comparable. 



2.4 Data normalization 



2.4 Data normalization 

• when one compares the expression levels of 
genes that should not change in the two 
conditions (say, housekeeping genes), what one 
quite often finds is that an average expression 
ratio of such genes deviates from 1 

• In the case of microarray experiments, as for 

   any large-scale experiments, there are many 
sources of systematic variation that affect 

  measurements of gene expression levels. 



• Normalization is a term that is used to 

describe the process of eliminating such 

variations to allow appropriate 

comparison of data obtained from the 

two samples. 



• The first step in a normalization procedure is to 
choose a gene-set (which consists of genes for 
which expression levels should not change under 
the conditions studied, that is the expression 
ratio for all genes in the gene-set is expected to 
be 1.  

• From that set, a normalization factor, which is a 
number that accounts for the variability seen in 
the gene set, is calculated. It is then applied to 
the other genes in the microarray experiment. 



Figure 3. Gene expression data before and after the normalization procedure. Note 

that before normalization the image had many spots of different intensities, but after 

normalization only spots that are really different light up. This image was kindly 

provided by N. Luscombe. Colour fi gure at: http://www.mrc-lmb.cam.ac.uk/genomes/ 

madanm/microarray/. 

http://www.mrc-lmb.cam.ac.uk/genomes/
http://www.mrc-lmb.cam.ac.uk/genomes/
http://www.mrc-lmb.cam.ac.uk/genomes/


Total intensity normalization 

 

• The basic assumption in a total intensity 

normalization is that the total quantity of RNA 

for the two samples is the same.  

• Also assuming that the same number of 

molecules of RNA from both samples 

hybridize to the microarray, the total 

hybridization intensities for the gene-sets 

should be equal.  



• So, a normalization factor can be calculated 

as: 





 

 

 

 

 

 

• This adjusts the ratio such that the mean log2 

(expression ratio) for the gene-set is equal to 0. 



• Other normalization methods include: linear 

regression, Chen’s ratio statistics and Lowess 

normalization. 

•  The next step following the normalization 

procedure is to filter low intensity data using 

specific threshold or relative threshold 

imposed according to the background 

intensity. 



3. ANALYSIS OF GENE EXPRESSION 

DATA 



• The processed data, after the normalization procedure, can 
then be represented in the form of a matrix, often called 
gene expression matrix (Table 1A).  

• Each row in the matrix corresponds to a particular gene and 
each column could either correspond to an experimental 
condition or a specific time point at which expression of the 
genes has been measured. 

•  The expression levels for a gene across different 
experimental conditions are cumulatively called the gene 

     expression profile, and the expression levels for all genes 
under an experimental condition are cumulatively called 
the sample expression profi le. 



Table 1. A: Gene expression matrix that contains rows representing genes and columns representing particular 

conditions. Each cell contains a value, given in arbitrary units, that refl ects the expression level of a gene under 

a corresponding condition. B: Condition C4 is used as a reference and all other conditions are normalized with 

respect to C4 to obtain expression ratios. C: In this table all expression ratios were converted into the log2 

(expression ratio) values. This representation has an advantage of treating up-regulation and down-regulation 

on comparable scales. D: Discrete values for the elements in Table 1.C. Genes with log2 (expression ratio) 

values greater than 1 were changed to 1, genes with values less than –1 were changed to –1. Any value 

between –1 and 1 was changed to 0. 



• Once we have obtained the gene expression 

• matrix (Table 1A), additional levels of 

annotation can be added either to the gene or 

to the sample. For example, the function of 

the genes can be provided, or the additional 

details on the biology of the sample may be 

provided, such as disease state or normal 

stateʼ. 



supervised learning 

• Depending on whether the annotation is used or not, 
analysis of gene expression data can be classified into two 
different types, namely supervised or unsupervised 
learning. 

•  In the case of a supervised learning, we do use the 
annotation of either the gene or the sample, and create 
clusters of genes or samples in order to identify patterns 
that are characteristic 

• for the cluster. For example, we could separate sample 
expression profi les into ʻdisease stateʼ and ʻnormal stateʼ 
groups, and then look for patterns that separate the sample 
profi le of the ʻdisease stateʼ from the sample profi le of the 
ʻnormal stateʼ. 



unsupervised learning 

• In the case of an unsupervised learning, the 

expression data is analysed to identify patterns 

that can group genes or samples into clusters 

without the use of any form of annotation.  

• For example, genes with similar expression profi 

les can be clustered together without the use of 

any annotation. However, annotation information 

may be taken into account at a later stage to 

make meaningful biological inferences. 



3.1 Representation of gene 

expression data 

• Expression data can be represented in fi ve 

• d Absolute measurement In the case of an absolute 
measurement, each cell in the matrix will represent the 
expression level of the gene in abstract units. Note that 
it is not meaningful to compare expression levels of 
genes across two different conditions in absolute units, 
because the starting amounts of mRNA could be 
different.  

• Table 1A shows a sample gene expression matrix with 
each cell containing the expression level in abstract 
units. different ways, which are described below: 



• Relative measurement or expression ratio 

• In the case of a relative measurement or representations involving 
expression ratio, the 

• expression level of a gene in abstract units is normalized with 
respect to its expression in a 

• reference condition. This gives the expression ratio of the gene in 
relative units. Note that 

• in such cases, a ratio of 4000/100 will lead to the same result as 
40/10. Thus any information on 

• absolute measurement will be lost in such a representation, but 
now meaningful comparison 

• across different conditions can be made as long as the same 
reference condition is used to get 

• the expression ratio.(table 1B) 



• log2(expression ratio) 

• In the case of tables representing the log2 (expression 
ratio) values, information on upregulation 

• and down-regulation is captured and is mapped in a 
symmetric manner. For 

• example, 4-fold up-regulation maps to log2 (4) = 2 and a 4-
fold down-regulation maps to 

• log2 (1/4) = -2. Thus, from this table the fold-change for a 
differentially regulated gene 

• under any condition can be easily recognised. Table 1C 
shows the log2 (expression ratio) 

• values of the genes under different conditions. 



• Discrete values 

• Another way of representing information is to convert to discrete 
numbers the values in the tables mentioned above.  

• In the case of converting the absolute measurement to discrete 
numbers, a binary expression matrix of 1 and 0 can be used, where 
1 means that the gene is expressed above a user defined threshold, 
and 0 means that the gene is expressed below this threshold.  

• In the case of making the relative expression tables or log2 
(expression ratio) tables discrete, values can be divided into 3 
classes, +1, 0 and –1, where +1 represents a gene that is positively 
regulated, 0 represents a gene that is not differentially regulated 
and –1 represents a gene that is repressed 



• .The process of making the values discrete 
loses a lot of information, but is useful to 
analyse expression profile les using algorithms 
that cannot handle real value expression 
matrices, for example algorithms calculating 
mutual information between genes or 
samples. 

•  Table 1D shows discrete values for the log2 
(expression ratio) table. 



• Representation of expression profi les as vectors 

• So far we have seen how individual cells in the gene 
expression matrix can be represented. 

• Similarly, an expression profi le (of a gene or a sample) 
can be thought of as a vector and can be represented 
in vector space.  

• For example, an expression profi le of a gene can be 
considered as a vector in n dimensional space (where n 
is the number of conditions), and an expression profi le 
of a sample with m genes can be considered as a vector 
in m dimensional space (where m is the number of 
genes). 



• In the example given below, the gene 

expression matrix X with m genes across n 

conditions is considered to be an m x n matrix, 

where the expression value for gene i in 

condition j is denoted as xij: 





3.2 Distance measures 

• Analysis of gene expression data is primarily 

based on comparison of gene expression 

 profi les or sample expression profi les.  

• In order to compare expression profi les, we 

need a measure to quantify how similar or 

dissimilar are the objects that are being 

considered 



Euclidean distance 

• Euclidean distance is one of the common 

distance measures used to calculate similarity 

   between expression profi les.  

• The Euclidean distance between two vectors 

of dimension 2, say A=[a1, a2] and B=[b1, b2] 

can be calculated as: 



• For instance two genes with expression profi 

les in two conditions G1=[1,2] and G2=[2,3], 

the Euclidean distance can be calculated as: 

 

 

 



• Thus for genes with expression data available 

for n conditions, represented as A=[a1, .., an] 

and B=[b1, .., bn], Euclidean distance can be 

calculated as: 

 



• In other words, the Euclidean distance 

between two genes is the square root of the 

sum of the squares of the distances between 

the values in each condition (dimension). 



Pearson correlation coeffi cient 

• One of the most commonly used metrics to 

measure similarity between expression profi 

les is the Pearson correlation coeffi cient (PCC) 

(Eisen et al. 1998).  

• Given the expression ratios for two genes 

under three conditions A=[a1, a2, a3] and 

B=[b1, b2, b3], PCC can be computed as 

follows:  





• The reason why we “mean centre” the expression profi les is to make sure 
that we compare shapes of the expression profi les and not their 
magnitude. 

•  Mean centering maintains the shape of the profi le, but it changes the 
magnitude of the profi le as shown in Figure 4. 

• A PCC value of 1 essentially means that the two genes have similar 
expression profi les and a value of –1 means that the two genes have 
exactly opposite expression profiles. A value of 0 means that no 
relationship can be inferred between the expression profiles of genes.  

• In reality, PCC values range from –1 to +1. A PCC value ≥ 0.7 suggests that 
the genes behave similarly and a PCC value ≤ -0.7 suggests that the genes 
have opposite behavior. The value of 0.7 is an arbitrary cut-off, and in real 
cases this value can be chosen depending on the dataset used. An 
example calculation is shown below: 



Rank correlation coefficient 

• Rank correlation coefficient (RCC) is a distance 
measure that does not take into account the 
actual magnitude of the expression ratio in 
each condition, but takes into account the 
rank of the expression ratio. For example, 
consider two genes A = [2, 3, 9, 15, 8]  

• and B = [2, 7, 15, 25, 13]. When we consider 
the rank of the values for different conditions 
for gene A, we get the following: 



• <2 (rank = 1) < 3 (rank = 2) < 8 (rank = 3) < 9 

(rank = 4) < 15 (rank = 5) which is equivalent 

to A = [1, 2, 4, 5, 3]. 

• Similarly, for gene B, we get the ranks for the 

values for the different conditions as: 

• 2 (rank = 1) < 7 (rank = 2) < 13 (rank = 3) < 15 

(rank = 4) < 25 (rank = 5), which is equivalent 

to B = [1, 2, 4, 5, 3]. 



• Rank correlation coefficient is the PCC calculated 

on the expression profiles converted into their 

rank profiles. In the above case the two genes 

have exactly the same rank profile, thus rank 

correlation coefficient becomes 1.  

• However, PCC is not applicable when two values 

within a rank profile are repeated. In this case, 

the rank correlation coefficient can be directly 

computed as: 



 

 

• Where n is the number of conditions 

(dimension of the profile) and di is the 

difference between ranks for the two genes at 

condition i. An advantage of RCC is that it is 

not sensitive to outliers in the data. 



Mutual information 

• A distance measure to compare genes whose profi les have 
been made discrete can be calculated using an entropy 
notion, called Shannon’s entropy.  

• This measure gives us a metric that is indicative of how 
much information from the expression profile of one gene 
can be obtained to predict the behaviour of the other gene.  

• Consider the discrete expression profi les for two genes, A = 
[1, 1, 0, 1, -1] and B = [1,-1, 0, 1, -1]. We know that at any 
condition, the values that have been made discrete can be 
1, 0 or –1. Thus, the probability for each state to occur in 
the profi le for the two genes can be computed as follows: 





From this table, the Shannonʼs entropy for the genes can be 

calculated as: 



• The next step in our calculation is to consider 

how often gene A and gene B have the same 

state (1, 0, or -1) across given conditions. 

•  There are 9 possible pairwise combinations of 

   states, and they are calculated for our example 

in the following manner: 





The number of conditions in which both gene A and gene B have their values 

equal to 1 over all conditions is 2 out of 5 conditions, and so on. Another 

parameter we will need to calculate mutual information is joint entropy 

H(A,B): 

 



• In general, the higher the mutual information 

score, the more similar are the two profiles. 

• However, precise state and consequently, 

interpretation of the observed score would 

  depend on the number of conditions for which 

measurements were available. 

•  For our case of 5 conditions, the obtained 

score of 0.97 is high. 


