
Multithreading

Threads

 Threads are lightweight processes as the overhead of

switching between threads is less

 The can be easily spawned

 The Java Virtual Machine spawns a thread when your

program is run called the Main Thread

Why do we need threads?

 To enhance parallel processing

 To increase response to the user

 To utilize the idle time of the CPU

 Prioritize your work depending on priority

Example

 Consider a simple web server

 The web server listens for request and
serves it

 If the web server was not multithreaded, the
requests processing would be in a queue,
thus increasing the response time and also
might hang the server if there was a bad
request.

 By implementing in a multithreaded
environment, the web server can serve
multiple request simultaneously thus
improving response time

Creating threads

 In java threads can be created by extending the Thread

class or implementing the Runnable Interface

 It is more preferred to implement the Runnable Interface

so that we can extend properties from other classes

 Implement the run() method which is the starting point

for thread execution

Running threads

 Example

class mythread implements Runnable{

public void run(){

System.out.println(“Thread Started”);

}

}

class mainclass {

public static void main(String args[]){

Thread t = new Thread(new mythread()); // This is the way to instantiate a
thread implementing runnable interface

t.start(); // starts the thread by running the run method

}

}

 Calling t.run() does not start a thread, it is just a
simple method call.

 Creating an object does not create a thread, calling
start() method creates the thread.

Examples

Extending thread

class Multi extends Thread{

public void run(){

System.out.println("thread is running...");

}

public static void main(String a[]){

Multi t1=new Multi();

t1.start();

}

}

Output : thread is running...

Implementing Runnable

class Multi implements Runnable{

public void run(){

System.out.println("thread is running...");

}

public static void main(String args[]){

Multi3 m1=new Multi3();

Thread t1 =new Thread(m1);

t1.start();

}

}

Output : thread is running...

Synchronization

 Synchronization is prevent data corruption

 Synchronization allows only one thread to perform an

operation on a object at a time.

 If multiple threads require an access to an object,

synchronization helps in maintaining consistency.

Example

public class Counter{

private int count = 0;

public int getCount(){

return count;

}

public setCount(int count){

this.count = count;

}

}

 In this example, the counter tells how many an access has been made.

 If a thread is accessing setCount and updating count and another thread is

accessing getCount at the same time, there will be inconsistency in the value of

count.

Fixing the example

public class Counter{

private static int count = 0;

public synchronized int getCount(){

return count;

}

public synchoronized setCount(int count){

this.count = count;

}

}

 By adding the synchronized keyword we make sure that when one thread is in the

setCount method the other threads are all in waiting state.

 The synchronized keyword places a lock on the object, and hence locks all the other

methods which have the keyword synchronized. The lock does not lock the methods

without the keyword synchronized and hence they are open to access by other

threads.

What about static methods?

public class Counter{

private int count = 0;

public static synchronized int getCount(){

return count;

}

public static synchronized setCount(int count){

this.count = count;

}

}

 In this example the methods are static and hence are associated with the class

object and not the instance.

 Hence the lock is placed on the class object that is, Counter.class object and not on

the object itself. Any other non static synchronized methods are still available for

access by other threads.

Common Synchronization mistake

public class Counter{

private int count = 0;

public static synchronized int getCount(){

return count;

}

public synchronized setCount(int count){

this.count = count;

}

}

 The common mistake here is one method is static synchronized and another method

is non static synchronized.

 This makes a difference as locks are placed on two different objects. The class

object and the instance and hence two different threads can access the methods

simultaneously.

Object locking

 The object can be explicitly locked in this way
synchronized(myInstance){

try{

wait();

}catch(InterruptedException ex){

}

System.out.println(“Iam in this “);

notifyAll();

}

• The synchronized keyword locks the object. The wait keyword
waits for the lock to be acquired, if the object was already locked
by another thread. Notifyall() notifies other threads that the lock
is about to be released by the current thread.

• Another method notify() is available for use, which wakes up only
the next thread which is in queue for the object, notifyall() wakes
up all the threads and transfers the lock to another thread having
the highest priority.

