
                                  Partial Differentiation 

Functions of Several Independent Variables 

Let u be a symbol which has one definite value for every pair of values of x and y. 

Then u is called a function of the two independent variables x and y and is written 

as u = f (x, y).   

Partial differential coefficients  

Given a function of two variables, ƒ ( x, y), the derivative with respect to x only 

(treating y as a constant) is called the partial derivative of ƒ with respect to x and is 

denoted by either ∂ƒ / ∂ x or ƒ x.  

Similarly, the derivative of ƒ with respect to y only (treating x as a constant) is 

called the partial derivative of ƒ with respect to y and is denoted by either  

∂ƒ / ∂ y or ƒ y. 

 Partial Differentiate ƒ with respect to x twice. (That is, partial differentiate ƒ 

with respect to x; then partial differentiate the result with respect to x again.) 

 

 Partial Differentiate ƒ with respect to y twice. (That is, partial differentiate ƒ 

with respect to y; then partial differentiate the result with respect to y again.) 

 

Mixed partials: 

 First partial differentiate ƒ with respect to x; then partial differentiate the 

result with respect to y. 
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 First partial differentiate ƒ with respect to y; then partial differentiate the 

result with respect to x. 
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Example 1: Determine the partial derivative of the function: f (x, y) = 3x + 4y. 

Solution: 

Given function: f (x,y) = 3x + 4y 

To find ∂f /∂x, keep y as constant and differentiate the function: 

Therefore, ∂f /∂x = 3 

Similarly, to find ∂f /∂y, keep x as constant and differentiate the function: 

Therefore, ∂f/∂y = 4 
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From (1) and (2) 
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