SOFTWARE ENGINEERING
LECTURE-11
03/02/21

SOFTWARE ENGINEERING
LECTURE-12
05/02/21

DASIL LUNLEF 1O IIN REQUIREIVIEINTS ANALYOID ANU
SPECIFICATION

* At the end of this lesson the student will be able to:

¢ Explain the role of a system analyst.

¢ I[dentify the important parts of SRS document.

¢ |dentify the functional requirements from any given problem description.

e Document the functional requirements from any given problem description.
¢ |[dentify the important properties of a good SRS document.

¢ |dentify the important problems that an organization would face if it does not develop an
SRS document.

¢ |dentify non-functional requirements from any given problem description.

¢ |dentify the problems that an unstructured specification would create during software
development.

e Represent complex conditions in the form of a decision tree.

¢ Represent complex conditions in the form of decision table.

The analyst starts requirements gathering and analysis activity by collecting all information
from the customer which could be used to develop the requirements of the system. He then
analyzes the collected information to obtain a clear and thorough understanding of the
product to be developed, with a view to removing all ambiguities and inconsistencies from
the initial customer perception of the problem. The following basic questions pertaining to
the project should be clearly understood by the analyst in order to obtain a good grasp of
the problem:

e What is the problem?

e Why is it important to solve the problem?
e What are the possible solutions to the problem?

® What exactly are the data input to the system and what exactly are the data output by the system?

e What are the likely complexities that might arise while solving the problem?

e |f there are external software or hardware with which the developed software has to
interface, then what exactly would the data interchange formats with the external system
be? After the analyst has understood the exact customer requirements, he proceeds to
identify and resolve the various requirements problems. The most important requirements
problems that the analyst has to identify and eliminate are the problems of anomalies,
inconsistencies, and incompleteness.

PARTS OF A SRS DOCUMENT

¢ The important parts of SRS document are:
Functional requirements of the system
Non-functional requirements of the system, and
Goals of implementation

Functional requirements:-

The functional requirements part discusses the functionalities required from the
system. The system is considered to perform a set of highlevel functions {fi}. The
functional view of the system is shown in fig. 3.1. Each function fi of the system can be
considered as a transformation of a set of input data (ii) to the corresponding set of
output data (oi). The user can get some meaningful piece of work done using a
high-level function.

system, it is necessary to learn hq,,

a 2.2 Functional Requirements
i 1 requirements of the -
ctiona q ts of the system. Each high-levyg

functional requiremen '
o an instance of use of the system by the user in some
1 requirement, the user can get some useful worg
nvolves accepting some data from the user,

d outputting the response to the user. For
nctional requirement might be

t of key words from

;= order to document the fun
+5 first identify the high-level
functional requirement corresponds t

~va+. Through the execution of a high-leve

done. Each high-level requirement typically i
it to the required response, an

traasforming
ecxample, in a Library Automation Software, a high-level fu

se=z.rch-book. This function involves accepting a book name oOr a se]
1lie ‘user, running a matching algorithm on the book list, and finally outputting the matched

entir.es. The generated system response can be in several forms, e.g. display on the terminal,

a printout, some data transferred to the other systems, etc. However, in degenerate cases, a
high-level requirement may not involve any input data or production of results.
Each high-level functional requirement may involve a series of interactions between
the system and one or more users. An example of the interactions that may occur to
complete a single high-level requirement is shown in Figure 4.2. Typically, there is some
initial data input by the user. To this, the system may display some response (called system
action). Based on this, the user may input further data, and so on. Even for the same high-
level function. there can be different interaction sequences Or scenarios (see Figure 4.2) due

to users selecting different options or entering different data items. The different scenarios
in a schematic

are essentially different paths (taken during an execution of a function)
interaction representation of a high-level functional requirement as shown in Figure 4.2,

Typically, each user input and the corresponding system action may be considered as a sub-
requirement of a high-level requirement. Thus, each high-level requirement might consist of
several sub-requirements.

In requirements specification, it is important to define the precise data input to the
system and the precise data output by the system. The data in a high-level requirement
should be described using high-level terms and it may be very difficult to identify the exact
components of this data accurately. A reason for this can be that in a high-level function,
the data might be input to the system in stages. For example, consider the withdraw-cash

function of an Automated Teller Machine (ATM) of Figure 4.2. Since during the course of

execution of the withdraw-cash function, the user would have to input the type of
account, the amount to be withdrawn, it is very difficult to form a single high-level name
that would accurately describe both the input data for the

subfunctions can be more accurately described.

the input data. However,

Select
e = withdraw -—cash

Symbols used:

‘ I User input

O System output

‘ Enter Option \

0dd S 3LON W03

Prompt
for amount
to be
withdrawn

‘7 Enter amount l

Diaisplay
current
account
balance

Display
checking
balance

FIGURE 4.2 Interactions between the userx and the system in the
withdraw —cash high-level functional reguirement.

to Identify the Functional Requirerments?

el functional reguirements often need to be identified either from an informal
cription document or fromm a conceptual understanding of the problem. Each
=quirement characterizes a way of systermnm usage by some user to perform some
jece of work. Remember that there can be many types of users of a system and
nts (or expectations) from the systermnm may be very different. So. it is often
ify the different types of users who might use the system and then oy to
uirements from each user’ s perspective. : :

n regarding which functionality of the system can be considered to be a
onal reguirement and the one that can be considered as part of anoi_:her
subfunction) leaves sScope<e for some subjectivity. For example. c_onslder
 function in a I ibrary Automation System. Suppose. when a user invokes

'y s

the issue-book function, the system would require the use

S€r to enter the detaijlg
book to be issued. Should the entry of the book details be considered as g higp .
function, or as only a part of the issue-book function? Many times, the chi.. .
obvious. But, sometimes it requires making non-trivial decisions.

2.4 How to Document the Functional Requirements?

imenting the functional requirements, we need to specify the set of funct

y e system. A function can be specified by identifying the state at wh;

Dut to the system, its input data domain, the output data domain. and ihe type
€ carried on the input data to obtain the output data. We now illustrate tie
the functional requirements through two examples. Let us first try 10
thdraw-cash function of an ATM (Automated Teller Machine) system.
_high-level requirement. It has several sub-requirement
user interactions. These user interaction sequences may vary
pending on some conditions. These different interactior
 ;: 0s. To accurately describe a functional requirement
: different scenarios that may occur.

NOTE 5 PRO
L CAMERA

S R e A A Ll A N T)

displayed
ISBIN number,

e system would search the book
- making the search,
r name match any of the key word

Publisher name, year of Publication,

the location in the library.

lect search option
-arch’> option

matches any of the key words

ggtp;f: Details of all books whose title or author name
entered by the user. The book details displayed would include- title of the book, author
name, ISBN number, catalog number. year of publication, number of copies available, and
the location in the library .
Processing: Search the book list based on the key words
R2: ew book

@Desc/l'i.r;’t:)n: When the ‘renew’ option is selected, the user is asked to enter his membership
number and password. After password validation., the list of the books borrowed by him is
displayed. The user can renew any of his borrowed books by indicating them. A reqguested

In this case, an error message is

book cannot be renewed if it is reserved by another user.

displayed.

R2.1: select renew option

State: The user has logged in and the main menu has been displayed.
Input: ‘renew’ option selection

Output: Prompt message to the user to enter his membership number and password

R2.2: login-
State: The renew option has been selected.
Input: Membership number and password

List of the books borrowed by the user is displayed, and the user is prompted to
the books to be renewed, if the password is valid. If the password is invalid, the user

Password wvalidation, search the books issued to the user from the borrower’s

display-
ti R2.3 if password is valid and R2.2 if password is invalid.

ew selected books
ser choice for books to be renewed out of the books borrowed by him.
nfirmation of the books successfully renewed and apology message for the

"ould not be renewed.

Check if anyone has reserved any of the requested books. Renew the books
user in the borrower’s list, if no one has reserved those books.

IDENTIFYING NON-FUNCTIONAL REQUIREMENTS

Nonfunctional requirements are the characteristics of the
system which can not be expressed as functions - such as
the maintainability of the system, portability of the
system, usability of the system, etc. Nonfunctional
requirements may include:

reliability issues, # performance issues,

human - computer interface issues,

interface with other external systems,

security and maintainability of the system, etc.

Nonfunctional requirements:-

Nonfunctional requirements deal with the characteristics of the
system which can not be expressed as functions - such as the
maintainability of the system, portability of the system,
usability of the system, etc.

Nonfunctional requirements may include:

reliability issues,

accuracy of results,

human - computer interface issues,

constraints on the system implementation, etc

The goals of implementation part documents some general suggestions regarding development. These suggestions guide

trade-off among design goals. The goals of implementation section might document issues such as revisions to the
system functionalities that may be required in the future, new devices to be supported in the future, reusability issues,
etc. These are the items which the developers might keep in their mind during development so that the developed
system may meet some aspects that are not required immediately

PROPERTIES OF A GOOD SRS DOCUMENT

e The important properties of a good SRS document are the following:

Concise. The SRS document should be concise and at the same time unambiguous, consistent, and
complete. Verbose and irrelevant descriptions reduce readability and also increase error possibilities.

Structured. It should be well-structured. A well-structured document is easy to understand and
modify. In practice, the SRS document undergoes several revisions to cope up with the customer
requirements. Often, the customer requirements evolve over a period of time. Therefore, in order to
make the modifications to the SRS document easy, it is important to make the document
well-structured.

Black-box view. It should only specify what the system should do and refrain from stating how to do
these. This means that the SRS document should specify the external behavior of the system and not
discuss the implementation issues. The SRS document should view the system to be developed as
black box, and should specify the externally visible behavior of the system. For this reason, the SRS
document is also called the black-box specification of a system.

Conceptual integrity. It should show conceptual integrity so that the reader can easily understand it.

Response to undesired events. It should characterize acceptable responses to undesired events.
These are called system response to exceptional conditions.

Verifiable. All requirements of the system as documented in the SRS document should be
verifiable. This means that it should be possible to determine whether or not requirements
have been met in an implementation. Problems without a SRS document ¢ The important
problems that an organization would face if it does not develop an SRS document are as
follows:

Without developing the SRS document, the system would not be implemented according to
customer needs. [

Without SRS document, it will be very much difficult for the maintenance engineers to
understand the functionality of the system. [It will be very much difficult for user document
writers to write the users’ manuals properly without understanding the SRS document.

Level 1 DFD

To develop the level 1 DFD, examine the high-level functional requirements.
If there are between 3 to 7 high-level functional requirements, then these
can be directly represented as bubbles in the level 1 DFD. We can then
examine the input data to these functions and the data output by these
functions and represent them appropriately in the diagram. If a system has
more than 7 high-level functional requirements, then some of the related
requirements have to be combined and represented in the form of a bubble
in the level 1 DFD. Such a bubble can be split in the lower DFD levels. If a
system has less than three high-level functional requirements, then some of
them need to be split into their sub-functions so that we have roughly about
5 to 7 bubbles on the diagram.

DECOMPOSITION

Each bubble in the DFD represents a function performed by the system.
The bubbles are decomposed into sub-functions at the successive levels
of the DFD. Decomposition of a bubble is also known as factoring or
exploding a bubble. Each bubble at any level of DFD is usually
decomposed to anything between 3 to 7 bubbles. Too few bubbles at any
level make that level superfluous. For example, if a bubble is decomposed
to just one bubble or two bubbles, then this decomposition becomes
redundant. Also, too many bubbles, i.e. more than 7 bubbles at any level
of a DFD makes the DFD model hard to understand. Decomposition of a
bubble should be carried on until a level is reached at which the function
of the bubble can be described using a simple algorithm

NUMBERING OF BUBBLES

It is necessary to number the different bubbles occurring in the DFD.
These numbers help in uniquely identifying any bubble in the DFD by its
bubble number. The bubble at the context level is usually assigned the
number O to indicate that it is the O level DFD. Bubbles at level 1 are
numbered, 0.1, 0.2, 0.3, etc, etc. When a bubble numbered x is
decomposed, its children bubble are numbered x.1, x.2, x.3, etc. In this
numbering scheme, by looking at the number of a bubble we can
unambiguously determine its level, its ancestors, and its successors.

COMMONLY MADE ERRORS WHILE CONSTRUCTING A DFD MODEL

Although DFDs are simple to understand and draw, students and practitioners alike
encounter similar types of problems while modelling software problems using DFDs. While
learning from experience is powerful thing, it is an expensive pedagogical technigue in the
business world. It is therefore helpful to understand the different types of mistakes that
users usually make while constructing the DFD model of system:s.

e Many beginners commit the mistake of drawing more than one bubble in the context
diagram. A context diagram should depict the system as a single bubble.

e Many beginners have external entities appearing at all levels of DFDs. All external
entities interacting with the system should be represented only in the context diagram.
The external entities should not appear at other levels of the DFD.

e It is a common oversight to have either too less or too many bubbles in a DFD. Only 3
to 7 bubbles per diagram should be allowed, i.e. each bubble should be decomposed to
between 3 and 7 bubbles.

e Many beginners leave different levels of DFD unbalanced.

A common mistake committed by many beginners while developing a DFD model is
attempting to represent control information in a DFD. It is important to realize that a DFD is
the data flow representation of a system, and it does not represent control information. For
an example mistake of this kind: o Consider the following example. A book can be searched
in the library catalog by inputting its name. If the book is available in the library, then the
details of the book are displayed. If the book is not listed in the catalog, then an error
message is generated. While generating the DFD model for this simple problem, many
beginners commit the mistake of drawing an arrow (as shown in fig.) to indicate the error
function is invoked after the search book. But, this is a control information and should not be
shown

5 10: Showing control information on a &

o Another error is trying to represent when or in what order different functions
(processes) are invoked and not representing the conditions under which different
functions are invoked.

o If a bubble A invokes either the bubble B or the bubble C depending upon some
conditions, we need only to represent the data that flows between bubbles A and B or
bubbles A and C and not the conditions depending on which the two modules are
invoked.

e A data store should be connected only to bubbles through data arrows. A data store
cannot be connected to another data store or to an external entity.
¢ All the functionalities of the system must be captured by the DFD model. No function of
the system specified in its SRS document should be overlooked.

e Only those functions of the system specified in the SRS document should be
represented, i.e. the designer should not assume functionality of the system not specified
by the SRS document and then try to represent them in the DFD. e Improper or
unsatisfactory data dictionary.

e The data and function names must be intuitive. Some students and even practicing
engineers use symbolic data names such a, b, ¢, etc. Such names hinder understanding the
DFD model.

SHORTCOMINGS OF A DFD MODEL

* DFDs leave ample scope to be imprecise. In the DFD model, the function performed by a
bubble is judged from its label. However, a short label may not capture the entire
functionality of a bubble. For example, a bubble named find-book-position has only
intuitive meaning and does not specify several things, e.g. what happens when some
input information are missing or are incorrect. Further, the find-bookposition bubble may
not convey anything regarding what happens when the required book is missing.

* Control aspects are not defined by a DFD. For instance, the order in which inputs are
consumed and outputs are produced by a bubble is not specified. A DFD model does not
specify the order in which the different bubbles are executed. Representation of such
aspects is very important for modeling real-time systems.

* The method of carrying out decomposition to arrive at the successive levels and the
ultimate level to which decomposition is carried out are highly sub#'ective and depend on
the choice and judgment of the analyst. Due to this reason, even for the same problem,
several alternative DFD representations are possible. Further, many times it is not possible
to say which DFD representation is superior or preferable to another one

® The data flow diagramming technique does not provide any specific guidance as to how exactly

to decompose a given function into its subfunctions and we have to use subjective judgment to
carry out decomposition.

