
SOFTWARE ENGINEERING

LECTURE-11

03/02/21

SOFTWARE ENGINEERING
LECTURE-23

PROJECT ESTIMATION TECHNIQUES

Estimation of various project parameters is a basic project planning activity. The
important project parameters that are estimated include: project size, effort required to
develop the software, project duration, and cost. These estimates not only help in
quoting the project cost to the customer, but are also useful in resource planning and
scheduling. There are three broad categories of estimation techniques:
• Empirical estimation techniques
• Heuristic techniques
 • Analytical estimation techniques

EMPIRICAL ESTIMATION TECHNIQUES
 Empirical estimation techniques are based on making an educated guess of the project
parameters. While using this technique, prior experience with development of similar
products is helpful. Although empirical estimation techniques are based on common
sense, different activities involved in estimation have been formalized over the years.
Two popular empirical estimation techniques are: Expert judgment technique and Delphi
cost estimation.

EXPERT JUDGMENT TECHNIQUE
 Expert judgment is one of the most widely used estimation techniques. In this approach,
an expert makes an educated guess of the problem size after analyzing the problem
thoroughly. Usually, the expert estimates the cost of the different components (i.e.
modules or subsystems) of the system and then combines them to arrive at the overall
estimate. However, this technique is subject to human errors and individual bias. Also, it is
possible that the expert may overlook some factors inadvertently. Further, an expert
making an estimate may not have experience and knowledge of all aspects of a project. For
example, he may be conversant with the database and user interface parts but may not be
very knowledgeable about the computer communication part. A more refined form of
expert judgment is the estimation made by group of experts. Estimation by a group of
experts minimizes factors such as individual oversight, lack of familiarity with a particular
aspect of a project, personal bias, and the desire to win contract through overly optimistic
estimates. However, the estimate made by a group of experts may still exhibit bias on
issues where the entire group of experts may be biased due to reasons such as political
considerations. Also, the decision made by the group may be dominated by overly assertive
members

DELPHI COST ESTIMATION
 Delphi cost estimation approach tries to overcome some of the shortcomings of the
expert judgment approach. Delphi estimation is carried out by a team comprising of a
group of experts and a coordinator. In this approach, the coordinator provides each
estimator with a copy of the software requirements specification (SRS) document and a
form for recording his cost estimate. Estimators complete their individual estimates
anonymously and submit to the coordinator. In their estimates, the estimators mention
any unusual characteristic of the product which has influenced his estimation. The
coordinator prepares and distributes the summary of the responses of all the
estimators, and includes any unusual rationale noted by any of the estimators. Based on
this summary, the estimators re-estimate. This process is iterated for several rounds.
However, no discussion among the estimators is allowed during the entire estimation
process. The idea behind this is that if any discussion is allowed among the estimators,
then many estimators may easily get influenced by the rationale of an estimator who
may be more experienced or senior. After the completion of several iterations of
estimations, the coordinator takes the responsibility of compiling the results and
preparing the final estimate

HEURISTIC TECHNIQUES
Heuristic techniques assume that the relationships among the different project parameters
can be modeled using suitable mathematical expressions. Once the basic (independent)
parameters are known, the other (dependent) parameters can be easily determined by
substituting the value of the basic parameters in the mathematical expression. Different
heuristic estimation models can be divided into the following two classes: single variable
model and the multi variable model. Single variable estimation models provide a means to
estimate the desired characteristics of a problem, using some previously estimated basic
(independent) characteristic of the software product such as its size. A single variable
estimation model takes the following form:
Estimated Parameter = c1 * ed 1
In the above expression, e is the characteristic of the software which has already been
estimated (independent variable). Estimated Parameter is the dependent parameter to be
estimated. The dependent parameter to be estimated could be effort, project duration,
staff size, etc. c1 and d1 are constants. The values of the constants c1 and d1 are usually
determined using data collected from past projects (historical data). The basic COCOMO
model is an example of single variable cost estimation model.

ANALYTICAL ESTIMATION TECHNIQUES
Analytical estimation techniques derive the required results starting with basic assumptions regarding the
project. Thus, unlike empirical and heuristic techniques, analytical techniques do have scientific basis.
Halstead’s software science is an example of an analytical technique. Halstead’s software science can be used
to derive some interesting results starting with a few simple assumptions. Halstead’s software science is
especially useful for estimating software maintenance efforts. In fact, it outperforms both empirical and
heuristic techniques when used for predicting software maintenance efforts.

Halstead’s Software Science- An Analytical Technique
Halstead’s software science is an analytical technique to measure size, development effort, and development
cost of software products. Halstead used a few primitive program parameters to develop the expressions for
over all program length, potential minimum value, actual volume, effort, and development time. For a given
program, let:

η1 be the number of unique operators used in the program,
η2 be the number of unique operands used in the program,
N1 be the total number of operators used in the program,
N2 be the total number of operands used in the program

LENGTH AND VOCABULARY
 The length of a program as defined by Halstead, quantifies total usage of all operators
and operands in the program. Thus, length N = N1 +N2. Halstead’s definition of the
length of the program as the total number of operators and operands roughly agrees
with the intuitive notation of the program length as the total number of tokens used in
the program. The program vocabulary is the number of unique operators and operands
used in the program. Thus, program vocabulary η = η1 + η2

PROGRAM VOLUME
The length of a program (i.e. the total number of operators and operands used in the
code) depends on the choice of the operators and operands used. In other words, for
the same programming problem, the length would depend on the programming style.
This type of dependency would produce different measures of length for essentially the
same problem when different programming languages are used. Thus, while expressing
program size, the programming language used must be taken into consideration:
 V = N log2 η

POTENTIAL MINIMUM VOLUME

THE POTENTIAL MINIMUM VOLUME V* IS DEFINED AS THE VOLUME OF MOST SUCCINCT PROGRAM IN WHICH A
PROBLEM CAN BE CODED. THE MINIMUM VOLUME IS OBTAINED WHEN THE PROGRAM CAN BE EXPRESSED
USING A SINGLE SOURCE CODE INSTRUCTION., SAY A FUNCTION CALL LIKE FOO() ;. IN OTHER WORDS, THE
VOLUME IS BOUND FROM BELOW DUE TO THE FACT THAT A PROGRAM WOULD HAVE AT LEAST TWO
OPERATORS AND NO LESS THAN THE REQUISITE NUMBER OF OPERANDS. THUS, IF AN ALGORITHM OPERATES
ON INPUT AND OUTPUT DATA D1, D2, … DN, THE MOST SUCCINCT PROGRAM WOULD BE F(D1, D2, … DN); FOR
WHICH Η1 = 2, Η2 = N.
THEREFORE, V* = (2 + Η2)LOG2(2 + Η2).

THE PROGRAM LEVEL L IS GIVEN BY L = V*/V. THE CONCEPT OF PROGRAM LEVEL L IS INTRODUCED IN AN
ATTEMPT TO MEASURE THE LEVEL OF ABSTRACTION PROVIDED BY THE PROGRAMMING LANGUAGE. USING THIS
DEFINITION, LANGUAGES CAN BE RANKED INTO LEVELS THAT ALSO APPEAR INTUITIVELY CORRECT. THE ABOVE
RESULT IMPLIES THAT THE HIGHER THE LEVEL OF A LANGUAGE, THE LESS EFFORT IT TAKES TO DEVELOP A
PROGRAM USING THAT LANGUAGE. THIS RESULT AGREES WITH THE INTUITIVE NOTION THAT IT TAKES MORE
EFFORT TO DEVELOP A PROGRAM IN ASSEMBLY LANGUAGE THAN TO DEVELOP A PROGRAM IN A HIGH-LEVEL
LANGUAGE TO SOLVE A PROBLEM.

EFFORT AND TIME
 The effort required to develop a program can be obtained by dividing the program
volume with the level of the programming language used to develop the code.
Thus, effort E = V/L, where E is the number of mental discriminations required to
implement the program and also the effort required to read and understand the
program.
Thus, the programming effort E = V²/V* (since L = V*/V) varies as the square of the
volume. Experience shows that E is well correlated to the effort needed for
maintenance of an existing program.
 The programmer’s time T = E/S, where S the speed of mental discriminations. The
value of S has been empirically developed from psychological reasoning, and its
recommended value for programming applications is 18

LENGTH ESTIMATION
Even though the length of a program can be found by calculating the total number of operators and operands in a
program, Halstead suggests a way to determine the length of a program using the number of unique operators and
operands used in the program. Using this method, the program parameters such as length, volume, cost, effort, etc.
can be determined even before the start of any programming activity. His method is summarized below

N = η1log2η1 + η2log2η2

Example

Let us consider the following C program:

main()
{
 int a, b, c, avg;

 scanf(“%d %d %d”, &a, &b, &c);

 avg = (a+b+c)/3;

 printf(“avg = %d”, avg);
}
The unique operators are: main,(),{},int,scanf,&,“,”,“;”,=,+,/, printf

The unique operands are: a, b, c, &a, &b, &c, a+b+c, avg, 3, “%d %d %d”, “avg = %d”

 Therefore, η1 = 12, η2 = 11
 Estimated Length = (12*log12 + 11*log11) = (12*3.58 + 11*3.45) = (43+38) = 81

 Volume = Length*log(23) = 81*4.52 = 366

SPECIFIC INSTRUCTIONAL OBJECTIVES
 At the end of this lesson the student would be able to:
 • Differentiate among organic, semidetached and embedded software projects.
 • Explain basic COCOMO.
 • Differentiate between basic COCOMO model and intermediate COCOMO model.
• Explain the complete COCOMO model.
 ORGANIC, SEMIDETACHED AND EMBEDDED SOFTWARE PROJECTS
 Boehm postulated that any software development project can be classified into one of the following three
categories based on the development complexity: organic, semidetached, and embedded. In order to classify a
product into the identified categories, Boehm not only considered the characteristics of the product but also those
of the development team and development environment. Roughly speaking, these three product classes
correspond to application, utility and system programs, respectively. Normally, data processing programs are
considered to be application programs. Compilers, linkers, etc., are utility programs. Operating systems and
real-time system programs, etc. are system programs.
System programs interact directly with the hardware and typically involve meeting timing constraints and
concurrent processing. Boehm’s [1981] definitio

Organic: A development project can be considered of organic type, if the project
deals with developing a well understood application program, the size of the
development team is reasonably small, and the team members are experienced in
developing similar types of projects.

Semidetached: A development project can be considered of semidetached type, if
the development consists of a mixture of experienced and inexperienced staff. Team
members may have limited experience on related systems but may be unfamiliar
with some aspects of the system being developed.

 Embedded: A development project is considered to be of embedded type, if the
software being developed is strongly coupled to complex hardware, or if the
stringent regulations on the operational procedures exist

COCOMO

 COCOMO (Constructive Cost Estimation Model) was proposed by Boehm [1981]. According to Boehm,
software cost estimation should be done through three stages:

Basic COCOMO, Intermediate COCOMO, and Complete COCOMO.

BASIC COCOMO MODEL
The basic COCOMO model gives an approximate estimate of the project parameters. The basic COCOMO
estimation model is given by the following expressions:

 effort = a1 х (kloc)a 2 pm

 tdev = b1 x (effort)b 2 months

 Where
• KLOC is the estimated size of the software product expressed in Kilo Lines of Code,
• a1, a2, b1, b2 are constants for each category of software products,
• Tdev is the estimated time to develop the software, expressed in months,
• Effort is the total effort required to develop the software product, expressed in person months (PMs).

Estimation of development effort For the three classes of software products, the
formulas for estimating the effort based on the code size are shown below:

Organic : Effort = 2.4(KLOC) 1.05 PM
Semi-detached : Effort = 3.0(KLOC) 1.12 PM
Embedded : Effort = 3.6(KLOC) 1.20 PM

 Estimation of development time For the three classes of software products, the
formulas for estimating the development time based on the effort are given below:

Organic : Tdev = 2.5(Effort) 0.38 Months
Semi-detached : Tdev = 2.5(Effort) 0.35 Months
Embedded : Tdev = 2.5(Effort) 0.32 Months

Example:

Assume that the size of an organic type software product has been estimated to be 32,000 lines of
source code. Assume that the average salary of software engineers be Rs. 15,000/- per month.
Determine the effort required to develop the software product and the nominal development time.
From the basic COCOMO estimation formula for organic software:

 Effort = 2.4 х (32)1.05 = 91 PM Nominal development time = 2.5 х (91)0.38 = 14 months

Cost required to develop the product = 14 х 15,000 = Rs. 210,000/-

INTERMEDIATE COCOMO MODEL
 The basic COCOMO model assumes that effort and development time are functions of the product size alone.
However, a host of other project parameters besides the product size affect the effort required to develop the
product as well as the development time. Therefore, in order to obtain an accurate estimation of the effort and
project duration, the effect of all relevant parameters must be taken into account. The intermediate COCOMO
model recognizes this fact and refines the initial estimate obtained using the basic COCOMO expressions by using
a set of 15 cost drivers (multipliers) based on various attributes of software development. For example, if modern
programming practices are used, the initial estimates are scaled downward by multiplication with a cost driver
having a value less than 1. If there are stringent reliability requirements on the software product, this initial
estimate is scaled upward. Boehm requires the project manager to rate these 15 different parameters for a
particular project on a scale of one to three. Then, depending on these ratings, he suggests appropriate cost
driver values which should be multiplied with the initial estimate obtained using the basic COCOMO. In general,
the cost drivers can be classified as being attributes of the following items:
PRODUCT: The characteristics of the product that are considered include the inherent complexity of the product,
reliability requirements of the product, etc.
COMPUTER: Characteristics of the computer that are considered include the execution speed required, storage
space required etc.
PERSONNEL: The attributes of development personnel that are considered include the experience level of
personnel, programming capability, analysis capability, etc.
DEVELOPMENT ENVIRONMENT: Development environment attributes capture the development facilities
available to the developers. An important parameter that is considered is the sophistication of the automation
(CASE) tools used for software development.

COMPLETE COCOMO MODEL
 A major shortcoming of both the basic and intermediate COCOMO models is that they consider a software
product as a single homogeneous entity. However, most large systems are made up several smaller
sub-systems. These subsystems may have widely different characteristics. For example, some subsystems
may be considered as organic type, some semidetached, and some embedded. Not only that the inherent
development complexity of the subsystems may be different, but also for some subsystems the reliability
requirements may be high, for some the development team might have no previous experience of similar
development, and so on. The complete COCOMO model considers these differences in characteristics of the
subsystems and estimates the effort and development time as the sum of the estimates for the individual
subsystems. The cost of each subsystem is estimated separately. This approach reduces the margin of error
in the final estimate. The following development project can be considered as an example application of
the complete COCOMO model. A distributed Management Information System (MIS) product for an
organization having offices at several places across the country can have the following sub-components:
• Database part
• Graphical User Interface (GUI) part
• Communication part Of these, the communication part can be considered as embedded software. The
database part could be semi-detached software, and the GUI part organic software. The costs for these
three components can be estimated separately, and summed up to give the overall cost of the system

SCHEDULING

• Gantt chart Gantt charts are mainly used to allocate resources to activities. The resources allocated to activities include staff, hardware, and
software. Gantt charts (named after its developer Henry Gantt) are useful for resource planning. A Gantt chart is a special type of bar chart
where each bar represents an activity. The bars are drawn along a time line. The length of each bar is proportional to the duration of time
planned for the corresponding activity. Gantt charts are used in software project management are actually an enhanced version of the standard
Gantt charts. In the Gantt charts used for software project management, each bar consists of a white part and a shaded part. The shaded part of
the bar shows the length of time each task is estimated to take. The white part shows the slack time, that is, the latest time by which a task must
be finished. A Gantt chart representation for the MIS problem of fig. 11.8 is shown in the fig. 11.9.

PERT CHART
 PERT (Project Evaluation and Review Technique) charts consist of a network of boxes and arrows. The boxes
represent activities and the arrows represent task dependencies. PERT chart represents the statistical variations in
the project estimates assuming a normal distribution. Thus, in a PERT chart instead of making a single estimate for
each task, pessimistic, likely, and optimistic estimates are made. The boxes of PERT charts are usually annotated
with the pessimistic, likely, and optimistic estimates for every task. Since all possible completion times between the
minimum and maximum duration for every task has to be considered, there are not one but many critical paths,
depending on the permutations of the estimates for each task. This makes critical path analysis in PERT charts very
complex. A critical path in a PERT chart is shown by using thicker arrows. The PERT chart representation of the MIS
problem of fig. 11.8 is shown in fig. 11.10. PERT charts are a more sophisticated form of activity chart. In activity
diagrams only the estimated task durations are represented. Since, the actual durations might vary from the
estimated durations, the utility of the activity diagrams are limited. Gantt chart representation of a project schedule
is helpful in planning the utilization of resources, while PERT chart is useful for monitoring the timely progress of
activities. Also, it is easier to identify parallel activities in a project using a PERT chart. Project managers need to
identify the parallel activities in a project for assignment to different engineers.

THANKS

SOFTWARE ENGINEERING
LECTURE-12

05/02/21

 BASIC CONCEPTS IN REQUIREMENTS ANALYSIS AND
SPECIFICATION

• At the end of this lesson the student will be able to:

 • Explain the role of a system analyst.

• Identify the important parts of SRS document.

• Identify the functional requirements from any given problem description.

• Document the functional requirements from any given problem description.

 • Identify the important properties of a good SRS document.

• Identify the important problems that an organization would face if it does not develop an
SRS document.

• Identify non-functional requirements from any given problem description.

• Identify the problems that an unstructured specification would create during software
development.

• Represent complex conditions in the form of a decision tree.

• Represent complex conditions in the form of decision table.

SPECIFIC INSTRUCTIONAL OBJECTIVES

The analyst starts requirements gathering and analysis activity by collecting all information
from the customer which could be used to develop the requirements of the system. He then
analyzes the collected information to obtain a clear and thorough understanding of the
product to be developed, with a view to removing all ambiguities and inconsistencies from
the initial customer perception of the problem. The following basic questions pertaining to
the project should be clearly understood by the analyst in order to obtain a good grasp of
the problem:
• What is the problem?
• Why is it important to solve the problem?
 • What are the possible solutions to the problem?

• What exactly are the data input to the system and what exactly are the data output by the system?
 • What are the likely complexities that might arise while solving the problem?
 • If there are external software or hardware with which the developed software has to
interface, then what exactly would the data interchange formats with the external system
be? After the analyst has understood the exact customer requirements, he proceeds to
identify and resolve the various requirements problems. The most important requirements
problems that the analyst has to identify and eliminate are the problems of anomalies,
inconsistencies, and incompleteness.

Role of a system analyst

• The important parts of SRS document are:
 Functional requirements of the system
 Non-functional requirements of the system, and
 Goals of implementation

Functional requirements:-

The functional requirements part discusses the functionalities required from the
system. The system is considered to perform a set of highlevel functions {fi}. The
functional view of the system is shown in fig. 3.1. Each function fi of the system can be
considered as a transformation of a set of input data (ii) to the corresponding set of
output data (oi). The user can get some meaningful piece of work done using a
high-level function.

PARTS OF A SRS DOCUMENT

Nonfunctional requirements are the characteristics of the
system which can not be expressed as functions - such as
the maintainability of the system, portability of the
system, usability of the system, etc. Nonfunctional
requirements may include:
 # reliability issues, # performance issues,
 # human - computer interface issues,
 # interface with other external systems,
 # security and maintainability of the system, etc.

IDENTIFYING NON-FUNCTIONAL REQUIREMENTS

 Nonfunctional requirements:-

Nonfunctional requirements deal with the characteristics of the
system which can not be expressed as functions - such as the
maintainability of the system, portability of the system,
usability of the system, etc.
 Nonfunctional requirements may include:
 # reliability issues,
 # accuracy of results,
 # human - computer interface issues,
 # constraints on the system implementation, etc

 Goals of implementation:-
 The goals of implementation part documents some general suggestions regarding development. These suggestions guide
trade-off among design goals. The goals of implementation section might document issues such as revisions to the
system functionalities that may be required in the future, new devices to be supported in the future, reusability issues,
etc. These are the items which the developers might keep in their mind during development so that the developed
system may meet some aspects that are not required immediately

• The important properties of a good SRS document are the following:

 Concise. The SRS document should be concise and at the same time unambiguous, consistent, and
complete. Verbose and irrelevant descriptions reduce readability and also increase error possibilities.

 Structured. It should be well-structured. A well-structured document is easy to understand and
modify. In practice, the SRS document undergoes several revisions to cope up with the customer
requirements. Often, the customer requirements evolve over a period of time. Therefore, in order to
make the modifications to the SRS document easy, it is important to make the document
well-structured.
Black-box view. It should only specify what the system should do and refrain from stating how to do
these. This means that the SRS document should specify the external behavior of the system and not
discuss the implementation issues. The SRS document should view the system to be developed as
black box, and should specify the externally visible behavior of the system. For this reason, the SRS
document is also called the black-box specification of a system.
 Conceptual integrity. It should show conceptual integrity so that the reader can easily understand it.

 Response to undesired events. It should characterize acceptable responses to undesired events.
These are called system response to exceptional conditions.

PROPERTIES OF A GOOD SRS DOCUMENT

Verifiable. All requirements of the system as documented in the SRS document should be
verifiable. This means that it should be possible to determine whether or not requirements
have been met in an implementation. Problems without a SRS document • The important
problems that an organization would face if it does not develop an SRS document are as
follows:
Without developing the SRS document, the system would not be implemented according to
customer needs. �
 Software developers would not know whether what they are developing is what exactly
required by the customer.
 Without SRS document, it will be very much difficult for the maintenance engineers to
understand the functionality of the system. � It will be very much difficult for user document
writers to write the users’ manuals properly without understanding the SRS document.

To develop the level 1 DFD, examine the high-level functional requirements.
If there are between 3 to 7 high-level functional requirements, then these
can be directly represented as bubbles in the level 1 DFD. We can then
examine the input data to these functions and the data output by these
functions and represent them appropriately in the diagram. If a system has
more than 7 high-level functional requirements, then some of the related
requirements have to be combined and represented in the form of a bubble
in the level 1 DFD. Such a bubble can be split in the lower DFD levels. If a
system has less than three high-level functional requirements, then some of
them need to be split into their sub-functions so that we have roughly about
5 to 7 bubbles on the diagram.

Level 1 DFD

Each bubble in the DFD represents a function performed by the system.
The bubbles are decomposed into sub-functions at the successive levels
of the DFD. Decomposition of a bubble is also known as factoring or
exploding a bubble. Each bubble at any level of DFD is usually
decomposed to anything between 3 to 7 bubbles. Too few bubbles at any
level make that level superfluous. For example, if a bubble is decomposed
to just one bubble or two bubbles, then this decomposition becomes
redundant. Also, too many bubbles, i.e. more than 7 bubbles at any level
of a DFD makes the DFD model hard to understand. Decomposition of a
bubble should be carried on until a level is reached at which the function
of the bubble can be described using a simple algorithm

DECOMPOSITION

 NUMBERING OF BUBBLES

It is necessary to number the different bubbles occurring in the DFD.
These numbers help in uniquely identifying any bubble in the DFD by its
bubble number. The bubble at the context level is usually assigned the
number 0 to indicate that it is the 0 level DFD. Bubbles at level 1 are
numbered, 0.1, 0.2, 0.3, etc, etc. When a bubble numbered x is
decomposed, its children bubble are numbered x.1, x.2, x.3, etc. In this
numbering scheme, by looking at the number of a bubble we can
unambiguously determine its level, its ancestors, and its successors.

Although DFDs are simple to understand and draw, students and practitioners alike
encounter similar types of problems while modelling software problems using DFDs. While
learning from experience is powerful thing, it is an expensive pedagogical technique in the
business world. It is therefore helpful to understand the different types of mistakes that
users usually make while constructing the DFD model of systems.

COMMONLY MADE ERRORS WHILE CONSTRUCTING A DFD MODEL

• Many beginners commit the mistake of drawing more than one bubble in the context
diagram. A context diagram should depict the system as a single bubble.
• Many beginners have external entities appearing at all levels of DFDs. All external
entities interacting with the system should be represented only in the context diagram.
The external entities should not appear at other levels of the DFD.
• It is a common oversight to have either too less or too many bubbles in a DFD. Only 3
to 7 bubbles per diagram should be allowed, i.e. each bubble should be decomposed to
between 3 and 7 bubbles.
• Many beginners leave different levels of DFD unbalanced.

A common mistake committed by many beginners while developing a DFD model is
attempting to represent control information in a DFD. It is important to realize that a DFD is
the data flow representation of a system, and it does not represent control information. For
an example mistake of this kind: o Consider the following example. A book can be searched
in the library catalog by inputting its name. If the book is available in the library, then the
details of the book are displayed. If the book is not listed in the catalog, then an error
message is generated. While generating the DFD model for this simple problem, many
beginners commit the mistake of drawing an arrow (as shown in fig.) to indicate the error
function is invoked after the search book. But, this is a control information and should not be
shown on the DFD

o Another error is trying to represent when or in what order different functions
(processes) are invoked and not representing the conditions under which different
functions are invoked.
 o If a bubble A invokes either the bubble B or the bubble C depending upon some
conditions, we need only to represent the data that flows between bubbles A and B or
bubbles A and C and not the conditions depending on which the two modules are
invoked.
 • A data store should be connected only to bubbles through data arrows. A data store
cannot be connected to another data store or to an external entity.
• All the functionalities of the system must be captured by the DFD model. No function of
the system specified in its SRS document should be overlooked.
 • Only those functions of the system specified in the SRS document should be
represented, i.e. the designer should not assume functionality of the system not specified
by the SRS document and then try to represent them in the DFD. • Improper or
unsatisfactory data dictionary.
 • The data and function names must be intuitive. Some students and even practicing
engineers use symbolic data names such a, b, c, etc. Such names hinder understanding the
DFD model.

 SHORTCOMINGS OF A DFD MODEL

• DFDs leave ample scope to be imprecise. In the DFD model, the function performed by a
bubble is judged from its label. However, a short label may not capture the entire
functionality of a bubble. For example, a bubble named find-book-position has only
intuitive meaning and does not specify several things, e.g. what happens when some
input information are missing or are incorrect. Further, the find-bookposition bubble may
not convey anything regarding what happens when the required book is missing.

• Control aspects are not defined by a DFD. For instance, the order in which inputs are
consumed and outputs are produced by a bubble is not specified. A DFD model does not
specify the order in which the different bubbles are executed. Representation of such
aspects is very important for modeling real-time systems.

• The method of carrying out decomposition to arrive at the successive levels and the
ultimate level to which decomposition is carried out are highly subjective and depend on
the choice and judgment of the analyst. Due to this reason, even for the same problem,
several alternative DFD representations are possible. Further, many times it is not possible
to say which DFD representation is superior or preferable to another one

• The data flow diagramming technique does not provide any specific guidance as to how exactly
to decompose a given function into its subfunctions and we have to use subjective judgment to
carry out decomposition.

